HEAL DSpace

Modelling fungal growth using radial basis function neural networks: The case of the ascomycetous fungus Monascus ruber van Tieghem

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Panagou, EZ en
dc.contributor.author Kodogiannis, V en
dc.contributor.author Nychas, GJ-E en
dc.date.accessioned 2014-06-06T06:47:53Z
dc.date.available 2014-06-06T06:47:53Z
dc.date.issued 2007 en
dc.identifier.issn 01681605 en
dc.identifier.uri http://dx.doi.org/10.1016/j.ijfoodmicro.2007.03.010 en
dc.identifier.uri http://62.217.125.90/xmlui/handle/123456789/3837
dc.subject Artificial neural networks en
dc.subject Monascus ruber en
dc.subject Polynomial regression en
dc.subject Predictive mycology en
dc.subject Radial basis function network en
dc.subject.other accuracy en
dc.subject.other article en
dc.subject.other Ascomycetes en
dc.subject.other binding kinetics en
dc.subject.other fungus growth en
dc.subject.other fungus isolation en
dc.subject.other growth rate en
dc.subject.other heat tolerance en
dc.subject.other mathematical model en
dc.subject.other Monascus en
dc.subject.other monascus ruber en
dc.subject.other nerve cell network en
dc.subject.other nonhuman en
dc.subject.other olive en
dc.subject.other pH measurement en
dc.subject.other radial basis function neural network en
dc.subject.other root mean square error model en
dc.subject.other sensitivity analysis en
dc.subject.other standard error of prediction en
dc.subject.other surface property en
dc.subject.other temperature measurement en
dc.subject.other training en
dc.subject.other Area Under Curve en
dc.subject.other Colony Count, Microbial en
dc.subject.other Food Contamination en
dc.subject.other Food Microbiology en
dc.subject.other Hydrogen-Ion Concentration en
dc.subject.other Kinetics en
dc.subject.other Models, Biological en
dc.subject.other Models, Statistical en
dc.subject.other Monascus en
dc.subject.other Neural Networks (Computer) en
dc.subject.other Predictive Value of Tests en
dc.subject.other Temperature en
dc.subject.other Water en
dc.subject.other Fungi en
dc.subject.other Monascus ruber en
dc.subject.other Oleaceae en
dc.title Modelling fungal growth using radial basis function neural networks: The case of the ascomycetous fungus Monascus ruber van Tieghem en
heal.type journalArticle en
heal.identifier.primary 10.1016/j.ijfoodmicro.2007.03.010 en
heal.publicationDate 2007 en
heal.abstract A radial basis function (RBF) neural network was developed and evaluated against a quadratic response surface model to predict the maximum specific growth rate of the ascomycetous fungus Monascus ruber in relation to temperature (20-40 °C), water activity (0.937-0.970) and pH (3.5-5.0), based on the data of Panagou et al. [Panagou, E.Z., Skandamis, P.N., Nychas, G.-J.E., 2003. Modelling the combined effect of temperature, pH and aw on the growth rate of M. ruber, a heat-resistant fungus isolated from green table olives. J. Appl. Microbiol. 94, 146-156]. Both RBF network and polynomial model were compared against the experimental data using five statistical indices namely, coefficient of determination (R2), root mean square error (RMSE), standard error of prediction (SEP), bias (Bf) and accuracy (Af) factors. Graphical plots were also used for model comparison. For training data set the RBF network predictions outperformed the classical statistical model, whereas in the case of test data set the network gave reasonably good predictions, considering its performance for unseen data. Sensitivity analysis showed that from the three environmental factors the most influential on fungal growth was temperature, followed by water activity and pH to a lesser extend. Neural networks offer an alternative and powerful technique to model microbial kinetic parameters and could thus become an additional tool in predictive mycology. © 2007 Elsevier B.V. All rights reserved. en
heal.journalName International Journal of Food Microbiology en
dc.identifier.issue 3 en
dc.identifier.volume 117 en
dc.identifier.doi 10.1016/j.ijfoodmicro.2007.03.010 en
dc.identifier.spage 276 en
dc.identifier.epage 286 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής

Αναζήτηση DSpace


Σύνθετη Αναζήτηση

Αναζήτηση

Ο Λογαριασμός μου

Στατιστικές