dc.contributor.author | Zhu, Y | en |
dc.contributor.author | Eiteman, MA | en |
dc.contributor.author | DeWitt, K | en |
dc.contributor.author | Altman, E | en |
dc.date.accessioned | 2014-06-06T06:47:23Z | |
dc.date.available | 2014-06-06T06:47:23Z | |
dc.date.issued | 2007 | en |
dc.identifier.issn | 00992240 | en |
dc.identifier.uri | http://dx.doi.org/10.1128/AEM.02022-06 | en |
dc.identifier.uri | http://62.217.125.90/xmlui/handle/123456789/3568 | |
dc.subject.other | Anaerobic phase | en |
dc.subject.other | Glyosylate | en |
dc.subject.other | Succinates | en |
dc.subject.other | Tricarbosylic acid | en |
dc.subject.other | Biochemistry | en |
dc.subject.other | Density (optical) | en |
dc.subject.other | Enzymes | en |
dc.subject.other | Fermentation | en |
dc.subject.other | Metabolism | en |
dc.subject.other | Mutagenesis | en |
dc.subject.other | Nuclear magnetic resonance | en |
dc.subject.other | Escherichia coli | en |
dc.subject.other | formate acetyltransferase | en |
dc.subject.other | formic acid derivative | en |
dc.subject.other | glyoxylic acid | en |
dc.subject.other | lactic acid | en |
dc.subject.other | lyase | en |
dc.subject.other | oxaloacetic acid | en |
dc.subject.other | pyruvate dehydrogenase | en |
dc.subject.other | pyruvate oxidase | en |
dc.subject.other | pyruvate synthase | en |
dc.subject.other | succinic acid | en |
dc.subject.other | unclassified drug | en |
dc.subject.other | anoxic conditions | en |
dc.subject.other | bacterium | en |
dc.subject.other | enzyme | en |
dc.subject.other | fermentation | en |
dc.subject.other | genetic engineering | en |
dc.subject.other | mutation | en |
dc.subject.other | aceE gene | en |
dc.subject.other | aceF gene | en |
dc.subject.other | aerobic fermentation | en |
dc.subject.other | anaerobic fermentation | en |
dc.subject.other | article | en |
dc.subject.other | bacterial gene | en |
dc.subject.other | bacterial growth | en |
dc.subject.other | bacterial metabolism | en |
dc.subject.other | bacterial strain | en |
dc.subject.other | carbon nuclear magnetic resonance | en |
dc.subject.other | citric acid cycle | en |
dc.subject.other | Escherichia coli | en |
dc.subject.other | fermentation | en |
dc.subject.other | gene mutation | en |
dc.subject.other | genetic code | en |
dc.subject.other | genetic engineering | en |
dc.subject.other | isotope labeling | en |
dc.subject.other | nonhuman | en |
dc.subject.other | optical density | en |
dc.subject.other | pfl gene | en |
dc.subject.other | poxB gene | en |
dc.subject.other | pps gene | en |
dc.subject.other | strain difference | en |
dc.subject.other | Aerobiosis | en |
dc.subject.other | Anaerobiosis | en |
dc.subject.other | Bacterial Proteins | en |
dc.subject.other | Culture Media | en |
dc.subject.other | Escherichia coli | en |
dc.subject.other | Fermentation | en |
dc.subject.other | Gene Expression Regulation, Bacterial | en |
dc.subject.other | Genetic Engineering | en |
dc.subject.other | Industrial Microbiology | en |
dc.subject.other | Lactates | en |
dc.subject.other | Magnetic Resonance Spectroscopy | en |
dc.subject.other | Mutation | en |
dc.subject.other | Escherichia coli | en |
dc.title | Homolactate fermentation by metabolically engineered Escherichia coli strains | en |
heal.type | journalArticle | en |
heal.identifier.primary | 10.1128/AEM.02022-06 | en |
heal.publicationDate | 2007 | en |
heal.abstract | We report the homofermentative production of lactate in Escherichia coli strains containing mutations in the aceEF, pfl, poxB, and pps genes, which encode the pyruvate dehydrogenase complex, pyruvate formate lyase, pyruvate oxidase, and phosphoenolpyruvate synthase, respectively. The process uses a defined medium and two distinct fermentation phases: aerobic growth to an optical density of about 30, followed by nongrowth, anaerobic production. Strain YYC202 (aceEF pfl poxB pps) generated 90 g/liter lactate in 16 h during the anaerobic phase (with a yield of 0.95 g/g and a productivity of 5.6 g/liter · h). Ca(OH)2 was found to be superior to NaOH for pH control, and interestingly, significant succinate also accumulated (over 7 g/liter) despite the use of N2 for maintaining anaerobic conditions. Strain ALS961 (YYC202 ppc) prevented succinate accumulation, but growth was very poor. Strain ALS974 (YVC202 frd ABCD) reduced succinate formation by 70% to less than 3 g/liter. 13C nuclear magnetic resonance analysis using uniformly labeled acetate demonstrated that succinate formation by ALS974 was biochemically derived from acetate in the medium. The absence of uniformly labeled succinate, however, demonstrated that glyosylate did not reeaier the tricarbosylic acid cycle via oxaloacetate. By minimizing the residual acetate at the time that the production phase commenced, the process with ALS974 achieved 138 g/liter lactate (1.55 M, 97% of the carbon products), with a yield of 0.99 g/g and a productivity of 6.3 g/liter · h during the anaerobic phase. Copyright © 2007, American Society for Microbiology. All Rights Reserved. | en |
heal.journalName | Applied and Environmental Microbiology | en |
dc.identifier.issue | 2 | en |
dc.identifier.volume | 73 | en |
dc.identifier.doi | 10.1128/AEM.02022-06 | en |
dc.identifier.spage | 456 | en |
dc.identifier.epage | 464 | en |
Αρχεία | Μέγεθος | Μορφότυπο | Προβολή |
---|---|---|---|
Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο. |