HEAL DSpace

Homolactate fermentation by metabolically engineered Escherichia coli strains

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Zhu, Y en
dc.contributor.author Eiteman, MA en
dc.contributor.author DeWitt, K en
dc.contributor.author Altman, E en
dc.date.accessioned 2014-06-06T06:47:23Z
dc.date.available 2014-06-06T06:47:23Z
dc.date.issued 2007 en
dc.identifier.issn 00992240 en
dc.identifier.uri http://dx.doi.org/10.1128/AEM.02022-06 en
dc.identifier.uri http://62.217.125.90/xmlui/handle/123456789/3568
dc.subject.other Anaerobic phase en
dc.subject.other Glyosylate en
dc.subject.other Succinates en
dc.subject.other Tricarbosylic acid en
dc.subject.other Biochemistry en
dc.subject.other Density (optical) en
dc.subject.other Enzymes en
dc.subject.other Fermentation en
dc.subject.other Metabolism en
dc.subject.other Mutagenesis en
dc.subject.other Nuclear magnetic resonance en
dc.subject.other Escherichia coli en
dc.subject.other formate acetyltransferase en
dc.subject.other formic acid derivative en
dc.subject.other glyoxylic acid en
dc.subject.other lactic acid en
dc.subject.other lyase en
dc.subject.other oxaloacetic acid en
dc.subject.other pyruvate dehydrogenase en
dc.subject.other pyruvate oxidase en
dc.subject.other pyruvate synthase en
dc.subject.other succinic acid en
dc.subject.other unclassified drug en
dc.subject.other anoxic conditions en
dc.subject.other bacterium en
dc.subject.other enzyme en
dc.subject.other fermentation en
dc.subject.other genetic engineering en
dc.subject.other mutation en
dc.subject.other aceE gene en
dc.subject.other aceF gene en
dc.subject.other aerobic fermentation en
dc.subject.other anaerobic fermentation en
dc.subject.other article en
dc.subject.other bacterial gene en
dc.subject.other bacterial growth en
dc.subject.other bacterial metabolism en
dc.subject.other bacterial strain en
dc.subject.other carbon nuclear magnetic resonance en
dc.subject.other citric acid cycle en
dc.subject.other Escherichia coli en
dc.subject.other fermentation en
dc.subject.other gene mutation en
dc.subject.other genetic code en
dc.subject.other genetic engineering en
dc.subject.other isotope labeling en
dc.subject.other nonhuman en
dc.subject.other optical density en
dc.subject.other pfl gene en
dc.subject.other poxB gene en
dc.subject.other pps gene en
dc.subject.other strain difference en
dc.subject.other Aerobiosis en
dc.subject.other Anaerobiosis en
dc.subject.other Bacterial Proteins en
dc.subject.other Culture Media en
dc.subject.other Escherichia coli en
dc.subject.other Fermentation en
dc.subject.other Gene Expression Regulation, Bacterial en
dc.subject.other Genetic Engineering en
dc.subject.other Industrial Microbiology en
dc.subject.other Lactates en
dc.subject.other Magnetic Resonance Spectroscopy en
dc.subject.other Mutation en
dc.subject.other Escherichia coli en
dc.title Homolactate fermentation by metabolically engineered Escherichia coli strains en
heal.type journalArticle en
heal.identifier.primary 10.1128/AEM.02022-06 en
heal.publicationDate 2007 en
heal.abstract We report the homofermentative production of lactate in Escherichia coli strains containing mutations in the aceEF, pfl, poxB, and pps genes, which encode the pyruvate dehydrogenase complex, pyruvate formate lyase, pyruvate oxidase, and phosphoenolpyruvate synthase, respectively. The process uses a defined medium and two distinct fermentation phases: aerobic growth to an optical density of about 30, followed by nongrowth, anaerobic production. Strain YYC202 (aceEF pfl poxB pps) generated 90 g/liter lactate in 16 h during the anaerobic phase (with a yield of 0.95 g/g and a productivity of 5.6 g/liter · h). Ca(OH)2 was found to be superior to NaOH for pH control, and interestingly, significant succinate also accumulated (over 7 g/liter) despite the use of N2 for maintaining anaerobic conditions. Strain ALS961 (YYC202 ppc) prevented succinate accumulation, but growth was very poor. Strain ALS974 (YVC202 frd ABCD) reduced succinate formation by 70% to less than 3 g/liter. 13C nuclear magnetic resonance analysis using uniformly labeled acetate demonstrated that succinate formation by ALS974 was biochemically derived from acetate in the medium. The absence of uniformly labeled succinate, however, demonstrated that glyosylate did not reeaier the tricarbosylic acid cycle via oxaloacetate. By minimizing the residual acetate at the time that the production phase commenced, the process with ALS974 achieved 138 g/liter lactate (1.55 M, 97% of the carbon products), with a yield of 0.99 g/g and a productivity of 6.3 g/liter · h during the anaerobic phase. Copyright © 2007, American Society for Microbiology. All Rights Reserved. en
heal.journalName Applied and Environmental Microbiology en
dc.identifier.issue 2 en
dc.identifier.volume 73 en
dc.identifier.doi 10.1128/AEM.02022-06 en
dc.identifier.spage 456 en
dc.identifier.epage 464 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής

Αναζήτηση DSpace


Σύνθετη Αναζήτηση

Αναζήτηση

Ο Λογαριασμός μου

Στατιστικές