HEAL DSpace

Computational topology for isotopic surface reconstruction

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Abe, K en
dc.contributor.author Bisceglio, J en
dc.contributor.author Ferguson, DR en
dc.contributor.author Peters, TJ en
dc.contributor.author Russell, AC en
dc.contributor.author Sakkalis, T en
dc.date.accessioned 2014-06-06T06:47:02Z
dc.date.available 2014-06-06T06:47:02Z
dc.date.issued 2006 en
dc.identifier.issn 03043975 en
dc.identifier.uri http://dx.doi.org/10.1016/j.tcs.2006.07.062 en
dc.identifier.uri http://62.217.125.90/xmlui/handle/123456789/3352
dc.subject Ambient isotopy en
dc.subject Computational topology en
dc.subject Computer graphics en
dc.subject Surface approximation en
dc.subject Topology methods for shape understanding and visualization en
dc.subject.other Algorithms en
dc.subject.other Approximation theory en
dc.subject.other Boundary conditions en
dc.subject.other Computational geometry en
dc.subject.other Computer graphics en
dc.subject.other Mathematical models en
dc.subject.other Topology en
dc.subject.other Ambient isotopy en
dc.subject.other Computational topology en
dc.subject.other Surface approximation en
dc.subject.other Topology methods en
dc.subject.other Computational methods en
dc.title Computational topology for isotopic surface reconstruction en
heal.type journalArticle en
heal.identifier.primary 10.1016/j.tcs.2006.07.062 en
heal.publicationDate 2006 en
heal.abstract New computational topology techniques are presented for surface reconstruction of 2-manifolds with boundary, while rigorous proofs have previously been limited to surfaces without boundary. This is done by an intermediate construction of the envelope (as defined herein) of the original surface. For any compact C2-manifold M embedded in R3, it is shown that its envelope is C1, 1. Then it is shown that there exists a piecewise linear (PL) subset of the reconstruction of the envelope that is ambient isotopic to M, whenever M is orientable. The emphasis of this paper is upon the formal mathematical proofs needed for these extensions. (Practical application examples have already been published in a companion paper.) Possible extensions to non-orientable manifolds are also discussed. The mathematical exposition relies heavily on known techniques from differential geometry and topology, but the specific new proofs are intended to be sufficiently specialized to prompt further algorithmic discoveries. © 2006 Elsevier B.V. All rights reserved. en
heal.journalName Theoretical Computer Science en
dc.identifier.issue 3 en
dc.identifier.volume 365 en
dc.identifier.doi 10.1016/j.tcs.2006.07.062 en
dc.identifier.spage 184 en
dc.identifier.epage 198 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής

Αναζήτηση DSpace


Σύνθετη Αναζήτηση

Αναζήτηση

Ο Λογαριασμός μου

Στατιστικές