HEAL DSpace

A multisensor fusion system for the detection of plant viruses by combining Artificial Neural Networks

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Frossyniotis, D en
dc.contributor.author Anthopoulos, Y en
dc.contributor.author Kintzios, S en
dc.contributor.author Perdikaris, A en
dc.contributor.author Yialouris, CP en
dc.date.accessioned 2014-06-06T06:46:57Z
dc.date.available 2014-06-06T06:46:57Z
dc.date.issued 2006 en
dc.identifier.issn 03029743 en
dc.identifier.uri http://62.217.125.90/xmlui/handle/123456789/3323
dc.relation.uri http://www.scopus.com/inward/record.url?eid=2-s2.0-33749834691&partnerID=40&md5=efd45f651e6415a4342066b513214f18 en
dc.subject.other Bioelectric Recognition Assay (BERA) en
dc.subject.other Gel matrix en
dc.subject.other Multi net system en
dc.subject.other Plant viruses en
dc.subject.other Bioassay en
dc.subject.other Biosensors en
dc.subject.other Neural networks en
dc.subject.other Pattern recognition en
dc.subject.other Plants (botany) en
dc.subject.other Viruses en
dc.subject.other Sensor data fusion en
dc.title A multisensor fusion system for the detection of plant viruses by combining Artificial Neural Networks en
heal.type conferenceItem en
heal.publicationDate 2006 en
heal.abstract Several researchers have shown that substantial improvements can be achieved in difficult pattern recognition problems by combining the outputs of multiple neural networks. In this work, we present and test a multi-net system for the detection of plant viruses, using biosensors. The system is based on the Bioelectric Recognition Assay (BERA) method for the detection of viruses, developed by our team. BERA sensors detect the electric response of culture cells suspended in a gel matrix, as a result to their interaction with virus's cells, rendering thus feasible his identification. Currently this is achieved empirically by examining the biosensor's response data curve. In this paper, we use a combination of specialized Artificial Neural Networks that are trained to recognize plant viruses according to biosensors' responses. Experiments indicate that the multi-net classification system exhibits promising performance compared with the case of single network training, both in terms of error rates and in terms of training speed (especially if the training of the classifiers is done in parallel). © Springer-Verlag Berlin Heidelberg 2006. en
heal.journalName Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) en
dc.identifier.volume 4132 LNCS - II en
dc.identifier.spage 401 en
dc.identifier.epage 409 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής

Αναζήτηση DSpace


Σύνθετη Αναζήτηση

Αναζήτηση

Ο Λογαριασμός μου

Στατιστικές