HEAL DSpace

Freeze prediction for specific locations using artificial neural networks

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Jain, A en
dc.contributor.author McClendon, RW en
dc.contributor.author Hoogenboom, G en
dc.date.accessioned 2014-06-06T06:46:47Z
dc.date.available 2014-06-06T06:46:47Z
dc.date.issued 2006 en
dc.identifier.issn 21510032 en
dc.identifier.uri http://62.217.125.90/xmlui/handle/123456789/3204
dc.relation.uri http://www.scopus.com/inward/record.url?eid=2-s2.0-33947106062&partnerID=40&md5=baf7c507c4e164f8d2c969be9de29105 en
dc.subject Artificial neural networks en
dc.subject Crop protection en
dc.subject Meteorological modeling en
dc.subject Temperature prediction en
dc.subject.other Crop protection en
dc.subject.other Meteorological modeling en
dc.subject.other Temperature prediction en
dc.subject.other Atmospheric humidity en
dc.subject.other Crops en
dc.subject.other Freezing en
dc.subject.other Rain en
dc.subject.other Solar radiation en
dc.subject.other Weather forecasting en
dc.subject.other Neural networks en
dc.subject.other air temperature en
dc.subject.other artificial neural network en
dc.subject.other crop production en
dc.subject.other decision support system en
dc.subject.other error analysis en
dc.subject.other frost en
dc.subject.other meteorology en
dc.subject.other prediction en
dc.subject.other relative humidity en
dc.subject.other weather forecasting en
dc.subject.other Farm Crops en
dc.subject.other Freezing en
dc.subject.other Humidity en
dc.subject.other Neural Networks en
dc.subject.other Rain en
dc.subject.other Sun Light en
dc.subject.other Fort Valley en
dc.subject.other Georgia en
dc.subject.other North America en
dc.subject.other United States en
dc.subject.other Alma en
dc.title Freeze prediction for specific locations using artificial neural networks en
heal.type journalArticle en
heal.publicationDate 2006 en
heal.abstract Artificial neural networks (ANNs) were developed to predict air temperature in 1 h increments from 1 to 12 h in the future. Weather data for model development and evaluation for three locations in Georgia (Fort Valley, Blairsville, and Alma) were obtained from the Georgia Automated Environmental Monitoring Network (AEMN). The data consisted of observations of meteorological variables such as air temperature, relative humidity, wind speed, rainfall, and solar radiation. The critical inputs for each model were determined by developing ANNs that used them in various input combinations and observing their effect on the accuracy of the ANN predictions. The results showed that of the meteorological variables considered, only rainfall was not useful in generating air temperature predictions. The optimal duration of prior data ranged from 2 h to 6 h, depending on the period of prediction. The mean absolute error (MAE) increased as the period of prediction got longer. The MAE of the evaluation dataset for predicting temperature 1 h in advance was 0.6°C for Fort Valley, 0.7°C for Blairsville, and 0.6°C for Alma. The corresponding MAE values for a 12 h prediction were 2.4°C, 3.0°C, and 2.6°C. Further efforts will be directed to developing general ANNs based on data from multiple locations. The availability of decision support systems that incorporate localized temperature predictions for use by fruit growers could have a positive impact on frost damage protection. © 2006 American Society of Agricultural and Biological Engineers. en
heal.journalName Transactions of the ASABE en
dc.identifier.issue 6 en
dc.identifier.volume 49 en
dc.identifier.spage 1955 en
dc.identifier.epage 1962 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής

Αναζήτηση DSpace


Σύνθετη Αναζήτηση

Αναζήτηση

Ο Λογαριασμός μου

Στατιστικές