dc.contributor.author |
Gatzouras, D |
en |
dc.contributor.author |
Giannopoulos, A |
en |
dc.contributor.author |
Markoulakis, N |
en |
dc.date.accessioned |
2014-06-06T06:46:18Z |
|
dc.date.available |
2014-06-06T06:46:18Z |
|
dc.date.issued |
2005 |
en |
dc.identifier.issn |
0179-5376 |
en |
dc.identifier.uri |
http://62.217.125.90/xmlui/handle/123456789/2906 |
|
dc.subject.classification |
Computer Science, Theory & Methods |
en |
dc.subject.classification |
Mathematics |
en |
dc.subject.other |
0/1-POLYTOPES |
en |
dc.title |
Lower bound for the maximal number of facets of a 0/1 polytope |
en |
heal.type |
journalArticle |
en |
heal.language |
English |
en |
heal.publicationDate |
2005 |
en |
heal.abstract |
Let f(n-1)(P) denote the number of facets of a polytope P in R-n. We show that there exist 0/1 polytopes P with f(n-1)(P) >= (cn/log(2)n)(n/2) where c > 0 is an absolute constant. This improves earlier work of Bar any and P or on a question of Fukuda and Ziegler. |
en |
heal.publisher |
SPRINGER |
en |
heal.journalName |
DISCRETE & COMPUTATIONAL GEOMETRY |
en |
dc.identifier.issue |
2 |
en |
dc.identifier.volume |
34 |
en |
dc.identifier.isi |
ISI:000230651800008 |
en |
dc.identifier.spage |
331 |
en |
dc.identifier.epage |
349 |
en |