dc.contributor.author | Cheng, CC-A | en |
dc.contributor.author | Sakkalis, T | en |
dc.date.accessioned | 2014-06-06T06:46:05Z | |
dc.date.available | 2014-06-06T06:46:05Z | |
dc.date.issued | 2004 | en |
dc.identifier.issn | 00927872 | en |
dc.identifier.uri | http://dx.doi.org/10.1081/AGB-120037404 | en |
dc.identifier.uri | http://62.217.125.90/xmlui/handle/123456789/2784 | |
dc.subject | Invertible map | en |
dc.subject | Jacobian conjecture | en |
dc.subject | Linearly triangularizable map | en |
dc.subject | Polynomial map | en |
dc.subject | Tame | en |
dc.title | Power linear keller maps of nilpotency index two | en |
heal.type | journalArticle | en |
heal.identifier.primary | 10.1081/AGB-120037404 | en |
heal.publicationDate | 2004 | en |
heal.abstract | Let K be a field. A polynomial map Kn → Kn is power linear of degree d if it is of the form X + H = (X1 + H 1, . . ., Xn + Hn), where Hi = Aid, Ai is a linear form in X1, . . ., Xn and d > 1. In this paper it is proved that if K is a field of characteristic not dividing d and F is a power linear polynomial map of degree d with nilpotency index two, i.e., (JH)2 = 0, then there exists a linear invertible polynomial map φ such that φ-1 Fφ is a triangular power linear map of degree d. Copyright © 2004 by Marcel Dekker, Inc. | en |
heal.journalName | Communications in Algebra | en |
dc.identifier.issue | 7 | en |
dc.identifier.volume | 32 | en |
dc.identifier.doi | 10.1081/AGB-120037404 | en |
dc.identifier.spage | 2635 | en |
dc.identifier.epage | 2637 | en |
Αρχεία | Μέγεθος | Μορφότυπο | Προβολή |
---|---|---|---|
Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο. |