HEAL DSpace

Engineering the xenobiotic substrate specificity of maize glutathione S-transferase I

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Labrou, NE en
dc.contributor.author Kotzia, GA en
dc.contributor.author Clonis, YD en
dc.date.accessioned 2014-06-06T06:45:58Z
dc.date.available 2014-06-06T06:45:58Z
dc.date.issued 2004 en
dc.identifier.issn 17410126 en
dc.identifier.uri http://dx.doi.org/10.1093/protein/gzh086 en
dc.identifier.uri http://62.217.125.90/xmlui/handle/123456789/2742
dc.subject Glutathione S-transferase en
dc.subject Herbicide detoxification en
dc.subject Protein engineering en
dc.subject Xenobiotic substrate en
dc.subject.other Activation energy en
dc.subject.other Catalysis en
dc.subject.other Dissociation en
dc.subject.other Entropy en
dc.subject.other Genetic engineering en
dc.subject.other High temperature effects en
dc.subject.other Hydrophobicity en
dc.subject.other Mutagenesis en
dc.subject.other Substrates en
dc.subject.other Superconducting transition temperature en
dc.subject.other Thermodynamics en
dc.subject.other Catalytic reaction en
dc.subject.other Hydrophobic substrates en
dc.subject.other Substrate binding en
dc.subject.other Xenobiotic substrates en
dc.subject.other Enzymes en
dc.subject.other amino acid en
dc.subject.other glutathione en
dc.subject.other glutathione transferase en
dc.subject.other glutathione transferase I en
dc.subject.other herbicide en
dc.subject.other isoleucine en
dc.subject.other mutant protein en
dc.subject.other phenylalanine en
dc.subject.other tryptophan en
dc.subject.other unclassified drug en
dc.subject.other xenobiotic agent en
dc.subject.other article en
dc.subject.other binding site en
dc.subject.other catalysis en
dc.subject.other conjugation en
dc.subject.other controlled study en
dc.subject.other detoxification en
dc.subject.other dissociation en
dc.subject.other energy en
dc.subject.other entropy en
dc.subject.other enzyme kinetics en
dc.subject.other enzyme specificity en
dc.subject.other enzyme structure en
dc.subject.other enzyme substrate complex en
dc.subject.other hydrophobicity en
dc.subject.other maize en
dc.subject.other nonhuman en
dc.subject.other nucleotide sequence en
dc.subject.other priority journal en
dc.subject.other protein engineering en
dc.subject.other site directed mutagenesis en
dc.subject.other temperature dependence en
dc.subject.other thermodynamics en
dc.subject.other xenobiotic metabolism en
dc.subject.other Amino Acid Substitution en
dc.subject.other Atrazine en
dc.subject.other Base Sequence en
dc.subject.other Catalytic Domain en
dc.subject.other DNA, Plant en
dc.subject.other Ethacrynic Acid en
dc.subject.other Glutathione Transferase en
dc.subject.other Kinetics en
dc.subject.other Models, Molecular en
dc.subject.other Molecular Sequence Data en
dc.subject.other Mutagenesis, Site-Directed en
dc.subject.other Protein Conformation en
dc.subject.other Protein Engineering en
dc.subject.other Recombinant Proteins en
dc.subject.other Sequence Homology, Amino Acid en
dc.subject.other Substrate Specificity en
dc.subject.other Temperature en
dc.subject.other Thermodynamics en
dc.subject.other Xenobiotics en
dc.subject.other Zea mays en
dc.subject.other Zea mays en
dc.title Engineering the xenobiotic substrate specificity of maize glutathione S-transferase I en
heal.type journalArticle en
heal.identifier.primary 10.1093/protein/gzh086 en
heal.publicationDate 2004 en
heal.abstract Glutathione S-transferases (GSTs) are a heterogeneous family of enzymes that catalyse the conjugation of glutathione (GSH) to electrophilic sites on a variety of hydrophobic substrates. In the present study three amino acid residues (Trp12, Phe35 and Ile118) of the xenobiotic binding site (H-site) of maize GST I were altered in order to evaluate their contribution to substrate binding and catalysis. These residues are not conserved and hence may affect substrate specificity and/or product dissociation. The results demonstrate that these residues are important structural moieties that modulate an enzyme's catalytic efficiency and specificity. Phe35 and Ile118 also participate in kcat regulation by affecting the rate-limiting step of the catalytic reaction. The effect of temperature on the catalytic activity of the wild-type and mutant enzymes was also investigated. Biphasic Arrhenius and Eyring plots for the wild-type enzyme showed an apparent transition temperature at 35°C, which seems to be the result of a change in the rate-limiting step of the catalytic reaction. Thermodynamic analysis of the activity data showed that the activation energy increases at low temperatures, whereas the entropy change seems to be the main determinant that contributes to the rate-limiting step at high temperatures. en
heal.journalName Protein Engineering, Design and Selection en
dc.identifier.issue 10 en
dc.identifier.volume 17 en
dc.identifier.doi 10.1093/protein/gzh086 en
dc.identifier.spage 741 en
dc.identifier.epage 748 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής

Αναζήτηση DSpace


Σύνθετη Αναζήτηση

Αναζήτηση

Ο Λογαριασμός μου

Στατιστικές