dc.contributor.author | Bakker, M | en |
dc.contributor.author | Nieber, JL | en |
dc.date.accessioned | 2014-06-06T06:45:42Z | |
dc.date.available | 2014-06-06T06:45:42Z | |
dc.date.issued | 2004 | en |
dc.identifier.issn | 15391663 | en |
dc.identifier.uri | http://62.217.125.90/xmlui/handle/123456789/2574 | |
dc.relation.uri | http://www.scopus.com/inward/record.url?eid=2-s2.0-12544260031&partnerID=40&md5=c9803877b7e14e5119f1a39b1de3c97b | en |
dc.subject.other | Analytic element method | en |
dc.subject.other | Analytic evaluation | en |
dc.subject.other | Co-ordinate transformation | en |
dc.subject.other | Darcy flux | en |
dc.subject.other | Governing equations | en |
dc.subject.other | Inhomogeneities | en |
dc.subject.other | Kirchhoff integral | en |
dc.subject.other | Pressure heads | en |
dc.subject.other | Saturated porous media | en |
dc.subject.other | Uniform flow | en |
dc.subject.other | Unsaturated flows | en |
dc.subject.other | Unsaturated porous media | en |
dc.subject.other | Vadose Zone | en |
dc.subject.other | Helmholtz equation | en |
dc.subject.other | Porous materials | en |
dc.subject.other | Steady flow | en |
dc.subject.other | Exponential functions | en |
dc.title | Analytic element modeling of cylindrical drains and cylindrical inhomogeneities in steady two-dimensional unsaturated flow | en |
heal.type | journalArticle | en |
heal.publicationDate | 2004 | en |
heal.abstract | The analytic element method, first developed for modeling flow in saturated porous media, is adapted to the solution of the governing equation for steady flow in unsaturated porous media. The governing equation for steady-state unsaturated flow is made amenable to analytic element solution through transformation with the Kirchhoff integral, representation of the hydraulic conductivity by an exponential function of the pressure head, and use of a coordinate transformation. A number of analytic elements are available for the resulting modified Helmholtz equation; analytic element equations are presented for uniform flow, cylindrical drains, and cylindrical inhomogeneities. The analytic element solution allows for the analytic evaluation of the pressure head, saturation, and Darcy flux at any point in the vadose zone. The applicability of the analytic element method to simulate unsatu-rated flow is demonstrated by solving for several cases of steady flow in a region containing arbitrarily located cylindrical inhomogeneities, and for flow in a region containing one cylindrical inhomogeneity and two cylindrical drains. © Soil Science Society of America. | en |
heal.journalName | Vadose Zone Journal | en |
dc.identifier.issue | 3 | en |
dc.identifier.volume | 3 | en |
dc.identifier.spage | 1038 | en |
dc.identifier.epage | 1049 | en |
Αρχεία | Μέγεθος | Μορφότυπο | Προβολή |
---|---|---|---|
Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο. |