dc.contributor.author |
Kastner, JR |
en |
dc.contributor.author |
Das, KC |
en |
dc.contributor.author |
Buquoi, Q |
en |
dc.contributor.author |
Melear, ND |
en |
dc.date.accessioned |
2014-06-06T06:45:15Z |
|
dc.date.available |
2014-06-06T06:45:15Z |
|
dc.date.issued |
2003 |
en |
dc.identifier.issn |
0013936X |
en |
dc.identifier.uri |
http://dx.doi.org/10.1021/es0259988 |
en |
dc.identifier.uri |
http://62.217.125.90/xmlui/handle/123456789/2325 |
|
dc.subject.other |
Surface deposition |
en |
dc.subject.other |
Catalysis |
en |
dc.subject.other |
Deposition |
en |
dc.subject.other |
Fly ash |
en |
dc.subject.other |
Hydrogen sulfide |
en |
dc.subject.other |
Oxidation |
en |
dc.subject.other |
Stoichiometry |
en |
dc.subject.other |
Waste utilization |
en |
dc.subject.other |
X ray diffraction analysis |
en |
dc.subject.other |
Environmental engineering |
en |
dc.subject.other |
coal |
en |
dc.subject.other |
hot water |
en |
dc.subject.other |
hydrogen sulfide |
en |
dc.subject.other |
methanethiol |
en |
dc.subject.other |
sulfur |
en |
dc.subject.other |
catalyst |
en |
dc.subject.other |
flue gas |
en |
dc.subject.other |
fly ash |
en |
dc.subject.other |
gas separation |
en |
dc.subject.other |
sulfur compound |
en |
dc.subject.other |
wood |
en |
dc.subject.other |
adsorption |
en |
dc.subject.other |
article |
en |
dc.subject.other |
catalysis |
en |
dc.subject.other |
chemical reaction kinetics |
en |
dc.subject.other |
crystal structure |
en |
dc.subject.other |
feasibility study |
en |
dc.subject.other |
fly ash |
en |
dc.subject.other |
gas analysis |
en |
dc.subject.other |
intermethod comparison |
en |
dc.subject.other |
low temperature |
en |
dc.subject.other |
oxidation |
en |
dc.subject.other |
reaction analysis |
en |
dc.subject.other |
regeneration |
en |
dc.subject.other |
stream (river) |
en |
dc.subject.other |
surface property |
en |
dc.subject.other |
waste management |
en |
dc.subject.other |
wood |
en |
dc.subject.other |
X ray diffraction |
en |
dc.subject.other |
Air Pollutants, Occupational |
en |
dc.subject.other |
Catalysis |
en |
dc.subject.other |
Coal |
en |
dc.subject.other |
Conservation of Natural Resources |
en |
dc.subject.other |
Hydrogen Sulfide |
en |
dc.subject.other |
Incineration |
en |
dc.subject.other |
Oxidation-Reduction |
en |
dc.subject.other |
Sulfhydryl Compounds |
en |
dc.subject.other |
Temperature |
en |
dc.subject.other |
Wood |
en |
dc.subject.other |
Fraxinus |
en |
dc.title |
Low temperature catalytic oxidation of hydrogen sulfide and methanethiol using wood and coal fly ash |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1021/es0259988 |
en |
heal.publicationDate |
2003 |
en |
heal.abstract |
The feasibility of reusing waste material as an inexpensive catalyst to remove sulfur compounds from gaseous waste streams has been demonstrated. Wood and coal fly ash were demonstrated to catalytically oxidize H 2S and methanethiol (CH 3SH) at low temperatures (23-25 °C). Wood ash had a significantly higher surface area compared to coal ash (44.9 vs 7.7 m 2/g), resulting in a higher initial H2S removal rate (0.16 vs 0.018 mg/g/min) under similar conditions. Elemental sulfur was determined to be the end product of H 2S oxidation, since X-ray diffraction analysis indicated the presence of crystalline sulfur. Catalytic decay occurred apparently due to surface deposition of sulfur and a subsequent decline in surface area (44.9-1.4 m 2/g) during the reaction of H 2S with the ash. Methanethiol was stoichiometrically converted to dimethyl disulfide ((CH 3) 2S 2) without significant catalytic decay. Catalytic decay was reduced and H 2S conversion increased (10% at 1.8 days vs 94% at 4.2 days) when H 2S loading was decreased to levels typical of many environmental applications (500 ppmv inlet and 1.43 mg/min vs 60 ppmv, 0.09 mg/ min). Catalyst regeneration using hot water (85 °C) washing was possible, but only increased fractional conversion from 0.2 to 0.6 and the initial reaction rate to 50% of the original H 2S oxidation activity. |
en |
heal.journalName |
Environmental Science and Technology |
en |
dc.identifier.issue |
11 |
en |
dc.identifier.volume |
37 |
en |
dc.identifier.doi |
10.1021/es0259988 |
en |
dc.identifier.spage |
2568 |
en |
dc.identifier.epage |
2574 |
en |