dc.contributor.author | Alvertos, N | en |
dc.date.accessioned | 2014-06-06T06:45:05Z | |
dc.date.available | 2014-06-06T06:45:05Z | |
dc.date.issued | 2002 | en |
dc.identifier.issn | 00913286 | en |
dc.identifier.uri | http://dx.doi.org/10.1117/1.1457457 | en |
dc.identifier.uri | http://62.217.125.90/xmlui/handle/123456789/2245 | |
dc.subject | Machine vision | en |
dc.subject | Polynomial surfaces | en |
dc.subject | Three-dimensional object recognition | en |
dc.subject.other | Approximation theory | en |
dc.subject.other | Computer vision | en |
dc.subject.other | Imaging systems | en |
dc.subject.other | Robotics | en |
dc.subject.other | Polynomial surfaces | en |
dc.subject.other | Object recognition | en |
dc.title | Method for aligning any-order polynomial surfaces in three-dimensional space | en |
heal.type | journalArticle | en |
heal.identifier.primary | 10.1117/1.1457457 | en |
heal.publicationDate | 2002 | en |
heal.abstract | A theoretically sound and computationally inexpensive method is proposed for expressing in a canonical form not only quadratic, but any-degree polynomial surfaces, thus enabling the alignment of 3-D objects composed of such surfaces to a standard coordinate system. Furthermore, an analytical proof of the lower upper bound for convergence is presented, by which the efficiency of the proposed method is verified. Experiments are conducted with up to sixth-degree polynomial surfaces, thus demonstrating the method converges to the desired results within a few steps. © 2002 Society of Photo-Optical Instrumentation Engineers. | en |
heal.journalName | Optical Engineering | en |
dc.identifier.issue | 4 | en |
dc.identifier.volume | 41 | en |
dc.identifier.doi | 10.1117/1.1457457 | en |
dc.identifier.spage | 886 | en |
dc.identifier.epage | 898 | en |
Αρχεία | Μέγεθος | Μορφότυπο | Προβολή |
---|---|---|---|
Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο. |