| dc.contributor.author | Al-kandari, M | en | 
| dc.contributor.author | Sakkalis, T | en | 
| dc.date.accessioned | 2014-06-06T06:44:57Z |  | 
| dc.date.available | 2014-06-06T06:44:57Z |  | 
| dc.date.issued | 2002 | en | 
| dc.identifier.uri | http://dx.doi.org/10.1016/S0167-8396(02)00123-1 | en | 
| dc.identifier.uri | http://62.217.125.90/xmlui/handle/123456789/2173 |  | 
| dc.subject | Canonical Form | en | 
| dc.subject | Computer Aided Design | en | 
| dc.subject | End Milling | en | 
| dc.subject | Euclidean Space | en | 
| dc.subject | Three Dimensional | en | 
| dc.subject | Pythagorean Hodograph | en | 
| dc.subject | Real Time | en | 
| dc.title | Structural invariance of spatial Pythagorean hodographs | en | 
| heal.type | journalArticle | en | 
| heal.identifier.primary | 10.1016/S0167-8396(02)00123-1 | en | 
| heal.publicationDate | 2002 | en | 
| heal.abstract | The structural invariance of the four-polynomial characterization for three-dimensional Pythagorean hodographs introduced by Dietz et al. (1993), under arbitrary spatial rotations, is demonstrated. The proof relies on a factored-quaternion representation for Pythagorean hodographs in three-dimensional Euclidean space—a particular instance of the “PH representation map” proposed by Choi et al. (2002)—and the unit quaternion description of spatial rotations. This approach furnishes | en | 
| heal.journalName | Computer Aided Geometric Design | en | 
| dc.identifier.doi | 10.1016/S0167-8396(02)00123-1 | en |