dc.contributor.author |
Rao, RR |
en |
dc.contributor.author |
Halper, J |
en |
dc.contributor.author |
Kisaalita, WS |
en |
dc.date.accessioned |
2014-06-06T06:44:48Z |
|
dc.date.available |
2014-06-06T06:44:48Z |
|
dc.date.issued |
2002 |
en |
dc.identifier.issn |
15675394 |
en |
dc.identifier.uri |
http://dx.doi.org/10.1016/S1567-5394(02)00004-X |
en |
dc.identifier.uri |
http://62.217.125.90/xmlui/handle/123456789/2078 |
|
dc.subject |
Alzheimer's disease |
en |
dc.subject |
ELF-EMF |
en |
dc.subject |
Helmholtz coil |
en |
dc.subject |
IMR-32 |
en |
dc.subject.other |
Cells |
en |
dc.subject.other |
Diseases |
en |
dc.subject.other |
Electrochemistry |
en |
dc.subject.other |
Electromagnetic fields |
en |
dc.subject.other |
Nylon polymers |
en |
dc.subject.other |
Pathology |
en |
dc.subject.other |
RNA |
en |
dc.subject.other |
Hydridization |
en |
dc.subject.other |
Biochemistry |
en |
dc.subject.other |
digoxigenin |
en |
dc.subject.other |
nylon |
en |
dc.subject.other |
amyloid precursor protein |
en |
dc.subject.other |
messenger RNA |
en |
dc.subject.other |
agar gel electrophoresis |
en |
dc.subject.other |
Alzheimer disease |
en |
dc.subject.other |
amplifier |
en |
dc.subject.other |
article |
en |
dc.subject.other |
cell differentiation |
en |
dc.subject.other |
controlled study |
en |
dc.subject.other |
culture medium |
en |
dc.subject.other |
electromagnetic field |
en |
dc.subject.other |
generator |
en |
dc.subject.other |
genetic transcription |
en |
dc.subject.other |
human |
en |
dc.subject.other |
human cell |
en |
dc.subject.other |
hybridization |
en |
dc.subject.other |
neuroblastoma |
en |
dc.subject.other |
neuroblastoma cell |
en |
dc.subject.other |
RNA extraction |
en |
dc.subject.other |
RNA probe |
en |
dc.subject.other |
signal transduction |
en |
dc.subject.other |
tumor differentiation |
en |
dc.subject.other |
biosynthesis |
en |
dc.subject.other |
cell culture |
en |
dc.subject.other |
genetics |
en |
dc.subject.other |
metabolism |
en |
dc.subject.other |
Northern blotting |
en |
dc.subject.other |
radiation exposure |
en |
dc.subject.other |
time |
en |
dc.subject.other |
Alzheimer Disease |
en |
dc.subject.other |
Amyloid beta-Protein Precursor |
en |
dc.subject.other |
Blotting, Northern |
en |
dc.subject.other |
Cell Differentiation |
en |
dc.subject.other |
Electromagnetic Fields |
en |
dc.subject.other |
Human |
en |
dc.subject.other |
Neuroblastoma |
en |
dc.subject.other |
RNA, Messenger |
en |
dc.subject.other |
Support, Non-U.S. Gov't |
en |
dc.subject.other |
Time Factors |
en |
dc.subject.other |
Transcription, Genetic |
en |
dc.subject.other |
Tumor Cells, Cultured |
en |
dc.subject.other |
Humans |
en |
dc.title |
Effects of 60 Hz electromagnetic field exposure on APP695 transcription levels in differentiating human neuroblastoma cells |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/S1567-5394(02)00004-X |
en |
heal.publicationDate |
2002 |
en |
heal.abstract |
Epidemiological studies have suggested that workers with primary occupation that are likely to have resulted in the medium-to-high extremely low frequency (ELF) electromagnetic field (EMF) exposure are at increased risk of Alzheimer's disease (AD) pathogenesis. As a first step in investigating the possibility of an association between the ELF-EMF exposure and AD at the cellular level, we have used the differentiating IMR-32 neuroblastoma cells. In double-blind experiments, IMR-32 cells were exposed to the magnetic field intensities of 50, 100, and 200 μT at a frequency of 60 Hz for a period of 4 h at the three ages of differentiation (2, 10, and 16 days after incubation in differentiation medium). We used a custom-made Helmholtz coil setup driven by a 60-Hz sinusoidal signal from a function generator and an in-house built power amplifier. Total RNA extracted from the exposed cells was separated by the agarose gel electrophoresis and transferred to a nylon membrane for the northern hybridization. Digoxygenin-labeled APP695 RNA probes were used to detect changes in the APP695 mRNA levels in response to the ELF-EMF exposure. The results reported herein provided no support for any relationship between the APP695 gene transcription and IMR-32 differentiation age, as well as the magnetic field exposure. This study constitutes the first step towards investigating the possibility of an association between the ELF-EMF exposure and AD manifestations at the cellular level. © 2002 Elsevier Science B.V. All rights reserved. |
en |
heal.journalName |
Bioelectrochemistry |
en |
dc.identifier.issue |
1 |
en |
dc.identifier.volume |
57 |
en |
dc.identifier.doi |
10.1016/S1567-5394(02)00004-X |
en |
dc.identifier.spage |
9 |
en |
dc.identifier.epage |
15 |
en |