HEAL DSpace

Functional and structural roles of the glutathione-binding residues in maize (Zea mays) glutathione S-transferase

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Labrou, NE en
dc.contributor.author Mello, LV en
dc.contributor.author Clonis, YD en
dc.date.accessioned 2014-06-06T06:44:39Z
dc.date.available 2014-06-06T06:44:39Z
dc.date.issued 2001 en
dc.identifier.issn 02646021 en
dc.identifier.uri http://dx.doi.org/10.1042/0264-6021:3580101 en
dc.identifier.uri http://62.217.125.90/xmlui/handle/123456789/1996
dc.subject Essential dynamics en
dc.subject Herbicide detoxification en
dc.subject Molecular dynamics en
dc.subject Protein engineering en
dc.subject.other Crops en
dc.subject.other Escherichia coli en
dc.subject.other Ionization en
dc.subject.other Mutagenesis en
dc.subject.other Spectroscopy en
dc.subject.other Enzyme catalytic mechanisms en
dc.subject.other Enzymes en
dc.subject.other 1 chloro 2,4 dinitrobenzene en
dc.subject.other glutamine en
dc.subject.other glutathione transferase en
dc.subject.other histidine en
dc.subject.other lactoylglutathione lyase en
dc.subject.other lysine en
dc.subject.other phenylalanine en
dc.subject.other serine en
dc.subject.other alpha helix en
dc.subject.other article en
dc.subject.other binding site en
dc.subject.other catalysis en
dc.subject.other computer simulation en
dc.subject.other controlled study en
dc.subject.other enzyme analysis en
dc.subject.other enzyme kinetics en
dc.subject.other enzyme structure en
dc.subject.other Escherichia coli en
dc.subject.other maize en
dc.subject.other molecular cloning en
dc.subject.other molecular interaction en
dc.subject.other nonhuman en
dc.subject.other priority journal en
dc.subject.other protein degradation en
dc.subject.other protein expression en
dc.subject.other protein stability en
dc.subject.other site directed mutagenesis en
dc.subject.other thermodynamics en
dc.subject.other Binding Sites en
dc.subject.other Cloning, Molecular en
dc.subject.other Computer Simulation en
dc.subject.other Escherichia coli en
dc.subject.other Glutathione en
dc.subject.other Glutathione Transferase en
dc.subject.other Hydrogen-Ion Concentration en
dc.subject.other Kinetics en
dc.subject.other Models, Chemical en
dc.subject.other Models, Molecular en
dc.subject.other Mutagenesis, Site-Directed en
dc.subject.other Point Mutation en
dc.subject.other Protein Binding en
dc.subject.other Spectrophotometry en
dc.subject.other Sulfhydryl Compounds en
dc.subject.other Trypsin en
dc.subject.other Zea mays en
dc.title Functional and structural roles of the glutathione-binding residues in maize (Zea mays) glutathione S-transferase en
heal.type journalArticle en
heal.identifier.primary 10.1042/0264-6021:3580101 en
heal.publicationDate 2001 en
heal.abstract The isoenzyme glutathione S-transferase (GST) I from maize (Zea mays) was cloned and expressed in Escherichia coli, and its catalytic mechanism was investigated by site-directed mutagenesis and dynamic studies. The results showed that the enzyme promotes proton dissociation from the GSH thiol and creates a thiolate anion with high nucleophilic reactivity by lowering the pKa of the thiol from 8.7 to 6.2. Steady-state kinetics fit well to a rapid equilibrium, random sequential Bi Bi mechanism, with intrasubunit modulation between the GSH binding site (G-site) and the electrophile binding site (H-site). The rate-limiting step of the reaction is viscosity-dependent, and thermodynamic data suggest that product release is rate-limiting. Five residues of GST I (Ser11, His40, Lys41, Gln53 and Ser67), which are located in the G-site, were individually replaced with alanine and their structural and functional roles in the 1-chloro-2,4-dinitrobenzene (CDNB) conjugation reaction were investigated. On the basis of steady-state kinetics, difference spectroscopy and limited proteolysis studies it is concluded that these residues: (1) contribute to the affinity of the G-site for GSH, as they are involved in side-chain interaction with GSH; (2) influence GSH thiol ionization, and thus its reactivity; (3) participate in kcat regulation by affecting the rate-limiting step of the reaction; and (4) in the cases of His40, Lys41 and Gin53 play an important role in the structural integrity of, and probably in the flexibility of, the highly mobile short 310-helical segment of α-helix 2 (residues 35-46), as shown by limited proteolysis experiments. These structural perturbations are probably transmitted to the H-site through changes in Phe35 conformation. This accounts for the modulation of KmCDNB by His40, Lys41 and Gln53, and also for the intrasubunit communication between the G- and H-sites. Computer simulations using CONCOORD were applied to maize GST I monomer and dimer structures, each with bound lactoylglutathione, and the results were analysed by the essential dynamics technique. Differences in dynamics were found between the monomer and the dimer simulations showing the importance of using the whole structure in dynamic analysis. The results obtained confirm that the short 310-helical segment of α-helix 2 (residues 35-46) undergoes the most significant structural rearrangements. These rearrangements are discussed in terms of enzyme catalytic mechanism. en
heal.journalName Biochemical Journal en
dc.identifier.issue 1 en
dc.identifier.volume 358 en
dc.identifier.doi 10.1042/0264-6021:3580101 en
dc.identifier.spage 101 en
dc.identifier.epage 110 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής

Αναζήτηση DSpace


Σύνθετη Αναζήτηση

Αναζήτηση

Ο Λογαριασμός μου

Στατιστικές