HEAL DSpace

Neural network models to study relationships between lead concentration in grasses and permanent urban descriptors in Athens city (Greece)

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Dimopoulos, I en
dc.contributor.author Chronopoulos, J en
dc.contributor.author Chronopoulou-Sereli, A en
dc.contributor.author Lek, S en
dc.date.accessioned 2014-06-06T06:44:02Z
dc.date.available 2014-06-06T06:44:02Z
dc.date.issued 1999 en
dc.identifier.issn 0304-3800 en
dc.identifier.uri http://62.217.125.90/xmlui/handle/123456789/1644
dc.subject urban pollution en
dc.subject heavy metal en
dc.subject modelling en
dc.subject backpropagation en
dc.subject multiple regression en
dc.subject sensitivity analysis en
dc.subject.classification Ecology en
dc.subject.other SOIL LEAD en
dc.subject.other HONG-KONG en
dc.subject.other METAL en
dc.subject.other PARKS en
dc.title Neural network models to study relationships between lead concentration in grasses and permanent urban descriptors in Athens city (Greece) en
heal.type journalArticle en
heal.language English en
heal.publicationDate 1999 en
heal.abstract The aim of the present work is to propose a model for the estimation of lead concentration in grasses using urban descriptors easily accessible and to study the specific effect of each descriptor on lead concentration. Six descriptors were considered: the density of vegetation, the vegetation height, wind velocity, height of building, distance of adjacent street, traffic volume. Lead concentrations were determined in one grass species, Cynodon dactylon (L.) Pers, (Bermuda grass), collected from 30 different locations in Athens city. The proposed model is a multilayer perceptron (MLP) trained by backpropagation. The predictive quality of the model was judged by two cross-validation methods. The generalization ability of the model is confirmed by a determination coefficient higher than 0.91. The study of the first partial derivatives of the output of the MLP with respect to each input is used to identify of the factors influencing the lead concentration and the mode of action of each factor. Results allow to classify the environmental descriptors by their decreasing influence on lead concentration: distance of adjacent street, traffic volume, density of vegetation, wind velocity, height of building and vegetation height. (C) 1999 Elsevier Science B.V. All rights reserved. en
heal.publisher ELSEVIER SCIENCE BV en
heal.journalName ECOLOGICAL MODELLING en
dc.identifier.issue 2-3 en
dc.identifier.volume 120 en
dc.identifier.isi ISI:000082297000008 en
dc.identifier.spage 157 en
dc.identifier.epage 165 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής

Αναζήτηση DSpace


Σύνθετη Αναζήτηση

Αναζήτηση

Ο Λογαριασμός μου

Στατιστικές