dc.contributor.author |
Dimas, E |
en |
dc.contributor.author |
Briassoulis, D |
en |
dc.date.accessioned |
2014-06-06T06:43:54Z |
|
dc.date.available |
2014-06-06T06:43:54Z |
|
dc.date.issued |
1999 |
en |
dc.identifier.issn |
09659978 |
en |
dc.identifier.uri |
http://62.217.125.90/xmlui/handle/123456789/1548 |
|
dc.relation.uri |
http://www.scopus.com/inward/record.url?eid=2-s2.0-0033185032&partnerID=40&md5=72f935867cbd817b16d81893ae0d18c5 |
en |
dc.subject |
B-Spline curve |
en |
dc.subject |
Bézier curves |
en |
dc.subject |
Non-Uniform Rational B-Splines |
en |
dc.subject.other |
Computational geometry |
en |
dc.subject.other |
Mathematical models |
en |
dc.subject.other |
Mathematical transformations |
en |
dc.subject.other |
Surface properties |
en |
dc.subject.other |
Three dimensional |
en |
dc.subject.other |
Vectors |
en |
dc.subject.other |
B-spline curve |
en |
dc.subject.other |
Bezier curves |
en |
dc.subject.other |
Mathematical representation |
en |
dc.subject.other |
Non uniform rational B-splines |
en |
dc.subject.other |
Computer simulation |
en |
dc.title |
3D geometric modelling based on NURBS: A review |
en |
heal.type |
journalArticle |
en |
heal.publicationDate |
1999 |
en |
heal.abstract |
This article reviews the prevailing geometric modelling techniques, based on Non-Uniform Rational B-Splines (NURBS). Emphasis is placed on the most important properties of NURBS surfaces and the available techniques for modelling real natural or artificial objects given a cloud of three-dimensional data points on their surface, possibly taken from a scanning device. © 1999 Elsevier Science Ltd and Civil-Comp Ltd. All rights reserved. |
en |
heal.journalName |
Advances in Engineering Software |
en |
dc.identifier.issue |
9-11 |
en |
dc.identifier.volume |
30 |
en |
dc.identifier.spage |
741 |
en |
dc.identifier.epage |
751 |
en |