HEAL DSpace

Watercore features for sorting red delicious apples: A statistical approach

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Shahin, MA en
dc.contributor.author Tollner, EW en
dc.contributor.author Evans, MD en
dc.contributor.author Arabnia, HR en
dc.date.accessioned 2014-06-06T06:43:49Z
dc.date.available 2014-06-06T06:43:49Z
dc.date.issued 1999 en
dc.identifier.issn 00012351 en
dc.identifier.uri http://62.217.125.90/xmlui/handle/123456789/1479
dc.relation.uri http://www.scopus.com/inward/record.url?eid=2-s2.0-0033232565&partnerID=40&md5=e5940e33ebf38a88f32258c499875256 en
dc.subject Apple en
dc.subject Bayesian classifier en
dc.subject Cosine transform en
dc.subject DCT en
dc.subject DWT en
dc.subject Feature selection en
dc.subject Image en
dc.subject Image features en
dc.subject Watercore en
dc.subject Wavelets en
dc.subject X-rays en
dc.subject.other Cosine transforms en
dc.subject.other Feature extraction en
dc.subject.other Nondestructive examination en
dc.subject.other Statistical methods en
dc.subject.other X rays en
dc.subject.other Bayesian classifier en
dc.subject.other Feature selection en
dc.subject.other Watercore en
dc.subject.other Fruits en
dc.subject.other Malus x domestica en
dc.title Watercore features for sorting red delicious apples: A statistical approach en
heal.type journalArticle en
heal.publicationDate 1999 en
heal.abstract Watercore is a serious internal defect found in most apple cultivars. X-ray imaging has shown potential for nondestructive detection of watercore, however, the major challenge is to decide which features should be used for fruit classification. A solution to this problem is feature selection based on their rank ordering. This article describes a stepwise feature selection procedure. The performance of the selected features was tested using the Bayes classifier. Spatial features (area, intensity) and (cosine, wavelet) transform coefficients were evaluated for their discriminating power. The spatial features performed better than the transform features. A linear Bayesian classifier with three input features (fruit area in the segmented image, mean intensity of fruit in the original image, and 10th harmonic of the discrete cosine transform) achieved an accuracy of 79%.Watecore is a serious internal defect found in most apple cultivars. X-ray imaging has shown potential for nondestructive detection of watercore, however, the major challenge is to decide which features should be used for fruit classification. A solution to this problem is feature selection based on their rank ordering. This article describes a stepwise feature selection procedure. The performance of the selected features was tested using the Bayes classifier. Spatial features (area, intensity) and (cosine, wavelet) transform coefficients were evaluated for their discriminating power. The spatial features performed better than the transform features. A linear Bayesian classifier with three input features (fruit area in the segmented image, mean intensity of fruit in the original image, and 10th harmonic of the discrete cosine transform) achieved an accuracy of 79%. en
heal.publisher ASAE, St. Joseph, MI, United States en
heal.journalName Transactions of the American Society of Agricultural Engineers en
dc.identifier.issue 6 en
dc.identifier.volume 42 en
dc.identifier.spage 1889 en
dc.identifier.epage 1896 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής

Αναζήτηση DSpace


Σύνθετη Αναζήτηση

Αναζήτηση

Ο Λογαριασμός μου

Στατιστικές