HEAL DSpace

Numerical model for the dynamic simulation of a large scale composting system

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Das, K en
dc.contributor.author Keener, HM en
dc.date.accessioned 2014-06-06T06:43:15Z
dc.date.available 2014-06-06T06:43:15Z
dc.date.issued 1997 en
dc.identifier.issn 00012351 en
dc.identifier.uri http://62.217.125.90/xmlui/handle/123456789/1128
dc.relation.uri http://www.scopus.com/inward/record.url?eid=2-s2.0-0031195077&partnerID=40&md5=b2fff09e8e19df6ff5bdab7e8dd0598d en
dc.subject Biosolids en
dc.subject Compost en
dc.subject Numerical modeling en
dc.subject Simulation en
dc.subject Waste management en
dc.subject.other Biosolids en
dc.subject.other Waste management en
dc.subject.other Compressibility of solids en
dc.subject.other Computer simulation en
dc.subject.other Degradation en
dc.subject.other Flow patterns en
dc.subject.other Heat transfer en
dc.subject.other Mass transfer en
dc.subject.other Numerical methods en
dc.subject.other Waste disposal en
dc.subject.other Composting en
dc.title Numerical model for the dynamic simulation of a large scale composting system en
heal.type journalArticle en
heal.publicationDate 1997 en
heal.abstract A numerical model simulating airflow pattern, heat and mass transfer, and degradation in the two dimensional cross-section of a deep bed composting vessel was developed. The model accounts for compressibility of the material and predicts spatial and temporal changes in state variables. The model was validated at a commercial facility that composts a mix of biosolids, bark and sawdust. Simulations were performed to quantify the effects of (1) initial moisture level, (2) depth of bed, (3) ambient air temperature, (4) cooling air recirculation, (5) material degradability and (6) blockage of plenum, on cost of aeration and spatial homogeneity of degradation within the vessel. Results show that cost of aeration is lowest when the material is at an initial moisture level of 55% and the bed depth is 3.5 m. Energy required per unit of dry matter degraded decreases as the ambient temperature increases. The increased aeration requirement when cooling air was recirculated was quantified, and shows that overall energy requirements are reduced by recirculating air. Aeration energy requirements and system throughput were compared under different operating parameters. en
heal.journalName Transactions of the American Society of Agricultural Engineers en
dc.identifier.issue 4 en
dc.identifier.volume 40 en
dc.identifier.spage 1179 en
dc.identifier.epage 1189 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής

Αναζήτηση DSpace


Σύνθετη Αναζήτηση

Αναζήτηση

Ο Λογαριασμός μου

Στατιστικές