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Abstract

In the present work, we report a novel class of glutathione transferases (GSTs) originated from the pathogenic soil
bacterium Agrobacterium tumefaciens C58, with structural and catalytic properties not observed previously in prokaryotic
and eukaryotic GST isoenzymes. A GST-like sequence from A. tumefaciens C58 (Atu3701) with low similarity to other
characterized GST family of enzymes was identified. Phylogenetic analysis showed that it belongs to a distinct GST class not
previously described and restricted only in soil bacteria, called the Eta class (H). This enzyme (designated as AtuGSTH1-1)
was cloned and expressed in E. coli and its structural and catalytic properties were investigated. Functional analysis showed
that AtuGSTH1-1 exhibits significant transferase activity against the common substrates aryl halides, as well as very high
peroxidase activity towards organic hydroperoxides. The crystal structure of AtuGSTH1-1 was determined at 1.4 Å resolution
in complex with S-(p-nitrobenzyl)-glutathione (Nb-GSH). Although AtuGSTH1-1 adopts the canonical GST fold, sequence and
structural characteristics distinct from previously characterized GSTs were identified. The absence of the classic catalytic
essential residues (Tyr, Ser, Cys) distinguishes AtuGSTH1-1 from all other cytosolic GSTs of known structure and function.
Site-directed mutagenesis showed that instead of the classic catalytic residues, an Arg residue (Arg34), an electron-sharing
network, and a bridge of a network of water molecules may form the basis of the catalytic mechanism. Comparative
sequence analysis, structural information, and site-directed mutagenesis in combination with kinetic analysis showed that
Phe22, Ser25, and Arg187 are additional important residues for the enzyme’s catalytic efficiency and specificity.
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Introduction

Glutathione transferases (GSTs; EC 2.5.1.18) are phase II

detoxification enzymes that metabolize a wide range of hydro-

phobic toxic compounds by catalyzing the conjugation of

glutathione (GSH) to the hydrophilic centre of the toxic substances

[1–4]. GSTs are known as promiscuous enzymes capable of

catalyzing the conjugation of GSH with a broad range of

electrophilic substrates [5–7]. Several members of the GST family

are selectively induced by biotic and abiotic stress treatments and

play important roles in the regulation of redox homeostasis as well

as in endogenous metabolism [3,4]. GSTs can also bind

hydrophobic compounds that are not their substrates [6]. This

non-substrate binding (termed ‘ligandin’ function) is possibly

associated with the sequestration, storage, and transportation of

drugs, hormones, and other metabolites [6]. GSTs, therefore, are

able to participate in various unrelated biological processes and

may be considered as ‘moonlighting’ proteins [5].

GSTs form a highly diverse protein family and, therefore, have

been subdivided into a number of subfamilies associated with

different functionalities and enzymatic properties [8–12]. GSTs

are divided into at least four major families of proteins, namely

cytosolic GSTs, mitochondrial GSTs, microsomal GSTs, and

bacterial fosfomycin-resistance proteins [5,7,8]. GSTs that are

grouped into different classes usually have different general

substrate profiles, while members of the same class have fewer

differences in substrate recognition [2,7]. All cytosolic GSTs have

the same protein folding, which comprises two domains. The N-

terminal domain (domain I) adopts a/b topology and provides the

GSH-binding site (G-site). The C-terminal domain (domain II) is

an all-a-helical structure and provides the structural element for

recognition of a broad range of hydrophobic co-substrate (H-site).

The H-site lies adjacent to the G-site and defines the substrate

specificity of the enzyme [7–12].

Like eukaryotic organisms, bacteria are characterized by

multiple GST genes of widely divergent sequences and unknown

biological function [8]. In bacteria, four different classes of GSTs

have been identified: beta, chi, theta and zeta. Most of the

bacterial GSTs identified to date belong to the bacterial-specific

beta class and the crystal structures of several representatives of
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this class have been determined and characterized, such as Proteus

mirabilis GST (PmGST) [13] and Ochrobactrum anthropi GST

(OaGST) [14].

Agrobacterium tumefaciens is a ubiquitous soil borne pathogen that

is responsible for crown gall, the plant disease that causes large

tumor-like growth in over 90 families of plants and results in major

agronomical losses [15]. We have recently reported the identifi-

cation and functional analysis of the GST family of enzymes from

A. tumefaciens C58 [16]. In the present study, we report the kinetic

characterization and crystal structure determination of Atu3701

protein from A. tumefaciens. Sequence and structural analysis

indicate that Atu3701 defines a novel GST class distinct from other

previously characterized GSTs.

Results and Discussion

Identification and bioinformatics analysis of a new class
of GSTs

In silico homology searches of Agrobacterium tumefaciens strain C58

genomic sequence revealed the presence of several sequences

corresponding to putative GST homologues [16]. A putative

sequence with NCBI accession number AAK89703 (ORF name

Atu3701, AtuGST [16]) which shares low sequence homology, and

therefore significant evolutionary distance, to other prokaryotic

and eukaryotic GST classes was identified and selected for further

study. AtuGST4 contains an open reading frame of 693 bp, coding

for a polypeptide of 230 amino acid residues with a predicted

molecular mass of 26,140 Da (residues 1–230) and a theoretical pI

of 6.33. The gene is located in a linear chromosome of A.

tumefaciens, between 779,833–780,525 bp [17].

BLAST analysis revealed that AtuGST4 has the highest identity

(,64–68%) with unclassified GSTs from proteobacteria species

(e.g. Stigmatella, Mesorhizobium, Sinorhizobium, Bradyrhizobium). Inter-

estingly, several close homologs of AtuGST4 were found in a set of

environmental sequences determined recently by the environmen-

tal (marine metagenome) sequencing project carried out by the

Whole Genome Shotgun (WGS) sequencing project (www.ncbi.

nlm.nih.gov/projects/WGS/WGSprojectlist.cgi). This sequence,

therefore, is likely to belong to a larger family. The size of this

family is expected to increase as the existing sequence databases

expand.

GSTs that share greater than 40% sequence identity are

generally included in the same class, and those that possess less

than 20–30% sequence identity are assigned to separate classes

[5,8,18]. As shown in Figure 1 and Table S1, AtuGST4 exhibits

only 17.2 to 26.1% sequence identity with representatives of all the

available different GST classes, which supports the grouping of

this enzyme into a new class. The AtuGST4 shows the highest

identity with the bacterial Chi (26.1%) and plant Phi (24.2%) class

enzymes.

In order to examine the genetic relationship between this

enzyme and GSTs from all known classes, a phylogenetic analysis

was created (Figure 2). The results showed that the AtuGST4

sequence is clearly separate from all GST classes presented in the

phylogenetic tree even from those representing bacterial-specific

classes (e.g. beta, chi) [12,19]. AtuGST4 branch extends separately

from the clades of GSTB and GSTX and appears to be more

ancient than them. All the above evidences point to the conclusion

that AtuGST4 belongs to a new GST class, distinct from previously

characterized GSTs. According to the available GSTs nomencla-

ture and classification system we propose that AtuGST4 belongs to

the Eta class (H) and may be designated as AtuGSTH1-1.

Purification and kinetic analysis
In order to characterize the AtuGSTH1-1 protein, the full-

length sequence was cloned, expressed in E. coli BL21 (DE3) cells,

and purified. The enzyme did not bind adequately to the classical

affinity adsorbents (GSH-Sepharose or hexyl-GSH-Sepharose)

that are widely used for the purification of recombinant as well as

native GSTs. This indicates differences in the G-site topology of

AtuGSTH1-1 compared to the majority of other GST classes that

are efficiently purified using GSH-based affinity adsorbents.

AtuGSTH1-1 was purified (.98% purity) in a single-step

procedure by metal-chelate affinity chromatography on Ni-NTA

affinity adsorbent.

Steady-state kinetic analysis using CDNB and GSH was carried

out and the kcat, and Km parameters were determined (Table 1).

The Km values for GSH and CDNB were determined as 0.29 mM

and 1.5 mM, respectively. Initial screening has shown that

AtuGSTH1-1 exhibits high GSH-dependent peroxidase activity

(GPOX) towards organic hydroperoxides such as cumene

hydroperoxide and tert-butyl hydroperoxide [16]. Organic

hydroperoxides can be formed both nonenzymatically by reaction

of free radicals with polyunsaturated fatty acids and enzymatically

by lipoxygenase- or cyclooxygenase-catalyzed oxidation of linoleic

acid and arachidonic acid. AtuGSTH1-1 exhibits very high

peroxidase activity (specific activity with cumene hydroperoxide

23.6 U/mg). With cumene hydroperoxide and tert-butyl peroxide

as electrophile substrates, AtuGSTH1-1 exhibits high catalytic

efficiency (kcat/Km) (Table 1), suggesting that hydroperoxides may

be the ‘natural’ substrates for AtuGSTH1-1.

AtuGSTH1-1 exhibited significant thioltransferase activity using

the 2-hydroxyethyl disulfide (HED) as a substrate. The kcat and

Km values for HED were determined as 2.4 min21 and 4.1 mM,

respectively (Table 1). In cases of oxidative stress, when there is a

lack of GSH, some protein thiols are S-thiolated making protein-

thiol disulfides [20]. This modification affects the activity of the

proteins or enzymes, suggesting that AtuGSTH1-1 may play an

important regulatory role in stress defence mechanism [21].

As shown in Table 1, the Km values for GSH are dependent on

the electrophilic substrate used. For example, the Km
GSH varies

between 0.3 to 1.7 mM. Probably, this is the result of the rapid

equilibrium random sequential bi-bi mechanism with intrasubunit

modulation between the GSH binding site and electrophile

binding site that is operated by GSTs [9,10].

Structural characterization of AtuGSTH1-1
Quality of the structure. The crystal structure of

AtuGSTH1-1 was determined to 1.4 Å resolution with Rwork and

Rfree of 17.2% and 18.6%, respectively (Table 2). The final refined

structure contains 213 residues, 313 water molecules, 1 S-(p-

nitrobenzyl)-glutathione (Nb-GSH) molecule, and 1 phosphate

ion. The first 13 and the last 4 residues are flexible and were not

modeled in the structure. Lys14 and Trp141 lack side-chains

owing to their high flexibility. Ten residues were modeled in

alternative conformations. The structure exhibits good

stereochemistry with root mean square deviation (r.m.s.d) in

bond lengths and bond angles of 0.008 Å and 1.15u, respectively.

The (phi, psi) plot shows 92.5% of the non-Gly and non-Pro

residues in the most favored regions and no residues in disallowed

regions. One residue (Glu85) is found in the generously allowed

region, possibly as a result of its interaction with Nb-GSH. The

coordinate error as deduced by the diffraction precision indicator

is 0.06 Å.

Description of the structure. The structure of AtuGSTH1-1

exhibits the characteristic overall fold of GSTs that comprises an

N-terminal thioredoxin-like domain and a C-terminal all a-helical

A. tumefaciens eta Class Glutathione Transferase
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domain (Figure 3) [1,5,9,10]. In total, ten a-helices (H1–H10), 2

310-helices and 4 b-strands (b1–b4) were located in the structure.

The N-terminal domain comprises two large a-helices (H1,

residues 35–45; H4, residues 85–95), two short a-helices (H2,

residues 56–59; H3, residues 62–65) and a four-stranded mixed b-

sheet with a left-handed twist formed by strands b2 (residues 50–

Figure 1. Multiple sequence alignment of AtuGST4 with representative GST sequences. Alpha, (GSTA, AAA16572); beta, (GSTB, CAR42930);
delta, (GSTD, EDW42478); epsilon, (GSTE, EDV55071); phi, (GSTF, AAA33469); kappa, (GSTK, EDM15501); lambda, (GSTL, BT051648); mu, (GSTM,
AAC17866); omega, (GSTO, EDL42044); pi, (GSTP, AAP72967); ro, (GSTR, ABV24478); sigma, (GSTS, EAA45010); theta, (GSTT, BAB39498); tau, (GSTU,
ABF99228), chi, (GSTX, EAW33767); and zeta, (GSTZ, P28342). NCBI accession numbers are in parentheses. The degree of conservation is shown below
the alignments in green. Amino acids are colored according to polarity or charge (red for negative charged, blue for positive charged, black for
neutral and green for uncharged polar amino acids).
doi:10.1371/journal.pone.0034263.g001
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54), b1 (residues 18–22), b3 (residues 75–78) and b4 (residues 81–

84). Pro73 at the beginning of b3 adopts a cis-configuration and

creates a characteristic turn essential for GSH binding. A 10-

residue linker region (residues 96–105) that adopts an extended

structure connects the N- terminal domain with the larger C-

terminal domain. The latter (residues 105 to 224) has an all-a
structure with the a-helices arranged in a right-handed spiral. a-

Helix H5 exhibits a sharp kink at its centre (Thr121) that splits it

into two smaller helices, namely H5a (residues 105–120) and H5b

(residues 122–135). a-Helix H5a is straight and oriented nearly

parallel to a-helix H4, while a-helix H5b has a bent appearance

and projects over the active site located in the N-terminal domain.

The C-terminal end of H7 takes a 310-helix conformation (residues

185–190). Helices H8 (residues 197–207) and H9 (194–197)

correspond closely to similar regions in most of the other GST

classes. H10 (residues 203–212) folds back over the top of the N-

terminal domain and against helix H1.

In the C-terminal domain, AtuGSTH1-1 possesses two local

structural motifs, an N-capping box and a hydrophobic staple

motif at the beginning of a-helix H6 in the hydrophobic core of

the molecule, similar to other cytosolic GSTs [22,23]. Both motifs

are located between amino acids 172–177 (Phe-Ser-Ala-Ala-Asp-

Ile). The N-capping box (Ser-Ala-Ala-Asp) consists of a reciprocal

hydrogen bonding interaction of Ser173 with Asp176, whereas the

hydrophobic staple motif consists of a hydrophobic interaction

between Phe172 and Ile177. In mammalian GSTs and in beta

Figure 2. Hypothetical evolutionary history of AtuGST4. Phylogeny tree was constructed using representative members from all known GST
classes: GSTA, (AAA16572, DAA16513 EDL26376); GSTB, (CAR42930 EFE52214 EDN73431); GSTD, (EDS36584 CAB03592 EDW42478); GSTE, (EDV55071
AAF64647 EDV36040); GSTF, (ABQ96852 CAI51314 AAA33469), GSTK, (EDL13490 EDM15501 AAS01180); GSTL, (BT051648 AED90518 ACH63212);
GSTM, (AAC17866 AAK28508 P46419); GSTO, (AAF71994 CAI17224 EDL42044); GSTP, (AAP72967 EDL32992 AAF01323); GSTR, (CAK10882 ABV24478
ABD67511); GSTS, (EAA45010 CAA86859 AAA92066); GSTTtheta, (XP001089367 BAB39498 DAA20393); GSTU, (ABF99228 AAC05216 BAF27055), GSTX,
(EAW45480 EAW33767 BAC07760); and GSTZ, (P57108 AAO61856 AAN39918 P28342) and the AtuGST4 from A. tumefaciens C58. NCBI accession
numbers are in parentheses.
doi:10.1371/journal.pone.0034263.g002
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class bacterial PmGST these structural elements are critical for

protein folding, stability, and catalytic function [8,22,23].

Structural comparison with other proteins. A Dali search

[24] showed an r.m.s.d with other GSTs between 2.3–3.5 Å and a

20–25% sequence identity. The GST-like protein YfcG (PDB id

3gx0) [25] an E. coli GST homologue with disulfide-bond

reductase activity, was identified as the closest structural

neighbor of AtuGSTH1-1 (Z = 22.9, r.m.s.d = 1.9 Å, 22%

sequence identity). The second structure in the Dali list was that

of Rhodobacter sphaeroides GST (PDB id 3lsz; Z = 21.7,

r.m.s.d = 2.5 Å, 28% sequence identity).

Subunit-subunit interactions. The structure of AtuGSTH1-

1 contains one molecule in the asymmetric unit. The functional

dimer found in GSTs was generated by the symmetry operator -x,

y, -z+K of the C2221 space group (Figure 3B). The interface

involves 49 residues from each monomer and the buried surface

area is ,1645 Å2 from each monomer (about 15% of the total

solvent accessible area of each monomer), which is within the

values found in most other GST families [1,7,9,10]. The main

regions involved in subunit interactions are residues 65–72 (part of

helix H3), 80–85 (strand b4), 86–96 (helix H4), 105–128 (part of

helix H5), 139–143 and 154–162 from helix H6. Close inspection

shows that the formation of the dimer follows the ‘lock-and-key’

mode that is also found in the phi, alpha, mu and pi classes of

GSTs [9,26]. The ‘‘lock-and-key’’ motif plays important functional

and structural roles and is generally considered important for

dimerization. The ‘‘key’’ is an aromatic residue in one subunit and

the ‘‘lock’’ is a cluster of hydrophobic residues from the other

interacting subunit. Indeed, the side chain of Phe70 acts as the

‘key’ that locks into a hydrophobic pocket consisting of Ile122’,

Leu160’, Leu170’, Met181’, Leu200’, and Trp114’ from the

second subunit. Six hydrogen bonds (three from each subunit) with

distances from 2.5 to 3.5 Å contribute further to the stability of the

interface: Arg156 NH1-Phe70 O 3.4 Å; Thr121 OG1-Glu85 OE2

2.6 Å; Arg148 NH2-Glu139 OE1 3.0 Å; Arg148 NH1-Glu139

OE2 2.8 Å. Glu85, in particular, is involved in Nb-GSH binding

through its OE1 atom whereas its OE2 atom makes a hydrogen

bond with Thr121 OG1 (distance 2.6 Å) from subunit B at the

subunit interface. This interaction might also induce the kink of

helix H5.

GSH Binding Site (G-site). A molecule of Nb-GSH was

found bound in the active site of AtuGSTH1-1 (Figure 3C). The

glutathione portion of Nb-GSH is located in a region formed by

the beginning of helices H1 and H4 and part of the b-turn

between H3 and b3. The c-Glu portion makes hydrogen bonds

through the oxygen atoms O11 and O12 with Glu85 and Ser86.

In addition, O11 makes two indirect contacts with main chain O

of Pro74 and side-chain NE2 of Gln68. The N1 atom interacts

with the side-chain atoms of Glu84 and also with two residues

Thr121 OG1 and Asn120 NE2 from the symmetry-related

subunit that forms the functional dimer. The conserved SNAIL/

TRAIL motif in the N-terminal domain that is present in most

GST classes and contributes polar functional groups to the GSH

binding site is absent in AtuGSTH1-1 [27,28]. However, a putative

SNAIL/TRAIL-like motif (SGAIV) was found at amino acid

positions 86–90 (Figure 1). The hydroxyl group of Ser86 makes a

hydrogen bond with the c-Glu portion of GSH. The other residues

of the motif are not directly involved in GSH binding.

Electrophilic Binding Site (H-site). The H-site in GSTs is

characterized by low conservation that reflects its role in substrate

specificity. In contrast to other GSTs where the H-site involves C-

terminal domain residues, interactions in AtuGSTH1-1 are mainly

provided by Arg187 and the long turn between strand b1 and

helix H1 (residues 25–33) (Figure 4). Compared to Nb-GSH

binding in tau class GmGSTU4-4 [9] the orientation is different

with the AtuGSTH1-1 4-nitrobezyl group more buried than the

GmGSTU4-4/4-nitrobenzyl group which points towards the bulk

solvent. This might be caused by the presence of bulky Trp163 in

Table 1. Steady-state kinetic analysis of AtuGSTH1-1.

Substrate Km (mM) kcat (min21)a kcat/Km (mM21?min21)

GSH 0.360.03 31.960.05 21.4

CDNB 1.560.09

GSH 0.960.07 339.466.05 123.9

CuOOH 2.760.21

GSH 1.160.05 149.765.21 95.3

t-BuOOH 1.660.07

GSH 1.760.1 2.460.05 0.6

HEDS 4.160.12

akcat values were calculated for the substrates CDNB, CuOOH, and HEDS.
doi:10.1371/journal.pone.0034263.t001

Table 2. Data collection and refinement statistics.

Data collection

Space group C2221

Cell dimensions (Å) 49.4696.0688.4

Number of molecules 1

Resolution range (Å) 20.0-1.40 (1.5-1.4)#

Number of measured reflections 247406 (45974)

Unique reflections 41008 (7614)

Completeness (%) 99.4 (99.9)

Mosaicity (u) 0.2

,I/s(I). 19.9 (4.1)

Rmerge (%) 5.6 (49.7)

Rmeas (%)& 6.2 (54.2)

Wilson B-factor (Å2) 20.8

Refinement

Reflections (working/test) 41008 (38919/2089)

Rwork/Rfree (%) 17.2/18.6

Number of protein atoms 1757

Number of waters 313

RMS deviation from ideal geometry

Bond lengths (Å) 0.008

Bond angles (u) 1.15

Ramachandran plot

Residues in most favoured regions (%) 92.5

Residues in additional allowed regions (%) 7.0

Residues in generously allowed regions (%) 0.5

Average B factors (Å2)

Main chain/Side chain 14.9/19.8

Waters 31.6

S-(p-nitrobenzyl)-glutathione 16.2

#Numbers in parenthesis correspond to the highest resolution shell.
&Redundancy-independent R-value [54].
doi:10.1371/journal.pone.0034263.t002
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GmGSTU4-4 whereas in AtuGSTH1-1 the structural equivalent

position of Trp163 is occupied by Arg187. Further comparison

shows that several hydrophobic residues from the C-terminal helix

in other GSTs are absent in AtuGSTH1-1 as a result of the

different position of the C-terminal helix (H10) in AtuGSTH1-1

away from the active site. In the case of alpha GSTA1-1 [29], tau

GmGSTU4-4 [9], and pi class GSTP1-1 [30], the C-terminal helix

is longer and acts as a lid over the substrate binding site, thus

creating a more restricted binding site entrance. The absence of

such a feature in AtuGSTH1-1 may explain the ability of this

enzyme to accommodate a diverse range of substrates at the H-site

[16]. Salt bridges between helix H1 residues Arg34, Glu43, and

Glu44 with helix H10 Arg214 and Arg209 may contribute to the

stabilization of H10 position away from the active site.

Catalytic mechanism and site-directed mutagenesis
It is widely accepted that GSTs achieve catalysis mainly through

the involvement of an active site residue that interacts with and

activates the sulfhydryl group of GSH to generate the catalytically

active thiolate anion [1,9–11,31,32]. This residue in the alpha,

mu, pi, sigma classes is a Tyr. In the delta, epsilon, theta, tau and

zeta GSTs, the active site residue is a Ser. In omega, beta and

lambda is instead a catalytically essential Cys, which is involved in

forming a mixed disulfide with GSH. Analysis of the structure of

AtuGSTH1-1 showed the absence of any functional side-chain

(Ser, Tyr, Cys) in hydrogen bond distance with the cysteinyl

moiety of the bound Nb-GSH (Figure 4). This observation

distinguishes AtuGSTH1-1 from all other cytosolic GSTs of known

structure and function. However, structural analysis indicated that

the side-chains of Phe22, Ser25, Arg34 and Arg187 are oriented

towards the ligand binding-site and may be important in substrate

binding and/or catalysis. Phe22 and Ser25 are located at the

beginning of a-helix H2 whose structural and functional role has

been established in numerous publications [9,10,31]. The

guanidium groups of Arg187 and Arg34 are adjacent to the sulfur

atom of Nb-GSH.

To investigate the role of Phe22, Ser25, Arg34 and Arg187,

these residues were mutated to Ala and the mutant enzymes

(Phe22Ala, Ser25Ala, Arg34Ala and Arg187Ala) were expressed in

E. coli BL21(DE3), purified as the wild-type enzyme, and subjected

to kinetic analysis. The kinetic parameters kcat and Km toward the

two model substrates CDNB and cumene hydroperoxide were

determined by steady-state kinetic analysis, and the results are

listed in Table 3. The results showed that in the case of CDNB/

GSH system the mutants Phe22Ala and Ser25Ala exhibit

moderate differences in Km values for CDNB, compared to the

wild-type enzyme, indicating that the mutations do not change

appreciably the affinity of the H-site for the CDNB. Small

differences were also observed for the kcat values. It is noteworthy

that mutant Ser25Ala and Phe22Ala showed decreased Km values

for GSH, suggesting that these residues are involved in GSH

binding in the G-site. The mutant enzyme Arg187Ala exhibits

larger reduction in catalytic efficiency and shows about 3-fold

lower kcat value and 5-fold increase Km value for CDNB,

compared to the wild-type enzyme. These results suggest that

Arg187 may contribute significantly either to the rate-limiting step

or to the chemistry of the catalytic reaction. The mutation of

Arg34 had the most detrimental effect on activity. Indeed, the

Arg34Ala mutant was inactive (kcat approximately 0.01 min21),

indicating that Arg34 may represent an important catalytic

residue.

The effect of mutations using CuOOH/GSH as substrates

appears to be significantly different from that seen in the CDNB/

GSH system. Phe22 and Ser25 seem to play an important role in

determining the Km values for CuOOH since a significant

increase was observed (6.4–14.7-fold). Interestingly, both mutants

show also significant increase in kcat values towards CuOOH.

Probably, the structural integrity or flexibility of the loop where

Phe22 and Ser25 are located has been altered in the mutated form

Figure 3. Crystal structure of AtuGSTH1-1. A. Ribbon diagram of
AtuGSTH1-1 monomer. Assignment of secondary structure elements
was carried out by DSSP [55]. The bound Nb-GSH and phosphate ion
are shown as sticks coloured according to atom type. B. Ribbon
diagram of the dimeric AtuGSTH1-1 structure. The 2-fold axis is
perpendicular to the plane of the page. Subunit A is colored in cyan
and subunit B is in lemon yellow. The inhibitor Nb-GSH is represented
with sticks and coloured according to atom type. C. Stereo view of the
mFo-DFc electron density omit map for the bound Nb-GSH contoured
at 3s. The figures were produced using the CCP4 molecular graphics
program [56].
doi:10.1371/journal.pone.0034263.g003
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of the enzyme. A plot of the crystallographic B-factors along the

polypeptide chain, which can give an indication of the relative

flexibility of the protein portions, indicates that this region undergo

large conformational changes (data not shown). The perturbation

of loop’s flexibility or the loss of specific interactions may lead to

structural perturbation of helix H2 with concomitant effect the

alterations in Km and kcat values.

The mutant enzyme Arg187Ala displays moderate differences

in kinetic constants, compared to the wild-type enzyme. On the

other hand, the mutation Arg34 to Ala abolishes enzyme activity

(kcat approximately 0.02 min21) using the CuOOH/GSH sub-

strate system, providing additional evidence for the catalytic role of

Arg34 (Table 3).

The effect of viscosity on the kinetic parameters was measured

in order to analyze the rate-limited step of the catalytic reaction. A

decrease of kcat by increasing the medium viscosity should indicate

that the rate-limiting step of reaction is related to the product

release or to diffusion-controlled structural transitions of the

protein [9,33–35]. A plot of the inverse relative rate constant kcat
o/

kcat (kcat
o is determined at viscosity go) versus the relative viscosity

g/go should be linear, with a slope equal to unity when the

product release is limited by a strictly diffusional barrier or a slope

approaching zero if the catalytic reaction chemistry is rate-

limiting. The inverse relative rate constant kcat
o/kcat for

AtuGSTH1-1 for the CDNB/GSH substrates system shows linear

dependence on the relative viscosity with a slope 0.15160.003

(Table 4). The observed intermediate value of the slope

(0,slope,1) indicates that the rate-limiting step in the enzyme

is not dependent on a diffusional barrier (i.e. product release) and

other viscosity-dependent motions or conformational changes of

the protein contribute to the rate-limiting step of the catalytic

reaction. The effect of viscosity was also evaluated using CuOOH.

The slope obtained was determined to be equal to 0.33960.008

supporting the results obtained using CDNB as substrate. The

mutants Phe22, Ser25 and Arg187 exhibit kcat-viscosity slopes with

slight differences compared to the wild type enzyme (Table 4).

This suggests that the mutations may contribute to catalysis

through modulation of specific conformational changes in the

Figure 4. Close-up stereo view of the active site. Hydrogen-bonds (,4.0 Å) between Nb-GSH and the enzyme are shown as dashed
lines. W304 and W117 from the proposed electron-sharing network are depicted. The orientation of Nb-GSH is the same as in Figure 3C. The figure
was produced using the CCP4 molecular graphics program [56].
doi:10.1371/journal.pone.0034263.g004

Table 3. Kinetic parameters of mutant enzymes for the CDNB/GSH and CuOOH/GSH reactions catalyzed by AtuGSTH1-1.

Enzyme Km, (mM) (GSH) Km, (mM) (CDNB) kcat (CDNB) (% of the wild-type)

Wild-type 0.3060.03 1.560.09 100

Phe22Ala 0.08560.002 3.260.39 90.5

Ser25Ala 0.1460.01 1.960.18 78.2

Arg34Ala NDa NDa 0.01

Arg187Ala 0.3460.08 7.160.76 33.5

Enzyme Km, (mM) (GSH) Km, (mM) (CuOOH) kcat (CuOOH) (% of the wild-type)

Wild-type 0.960.07 2.760.21 100

Phe22Ala 2.960.56 39.662.81 553.0

Ser25Ala 17.361.11 17.461.61 298.1

Arg34Ala NDa NDa 0.02

Arg187Ala 0.9460.02 3.560.66 79.9

aND: Non determined.
doi:10.1371/journal.pone.0034263.t003
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enzyme without excluding the possibility of their involvement in

the reaction chemistry (i.e. Arg187).

Recently, a conserved electron-sharing network that assists the

glutamyl c-carboxylate of GSH to act as a catalytic base accepting

the proton from the -SH thiol group of GSH, forming an ionized

GSH was investigated in GSTs [36]. This electron-sharing

network is created by residues that form ionic bridge interactions

between the negatively-charged glutamyl carboxylate group of

GSH, a positively-charged residue (primarily Arg) and a

negatively-charged residue (Glu or Asp) stabilized by hydrogen-

bonding networks with surrounding residues (Ser, Thr) and/or

water-mediated contacts. This network has been suggested to

contribute to the ‘‘base-assisted deprotonation’’ model postulated

to be essential for the GSH ionization step of the catalytic

mechanism [36]. In the AtuGSTH1-1/Nb-GSH complex, the

conserved residues Arg34, Glu85, Ser86, Gln68 and Asn120’

appear to form the proposed electron-sharing network. Based on

Quantum mechanics/Molecular mechanics (QM/MM) calcula-

tions it was recently proposed [37] that the GSH activation by

GSTs is accomplished by a water-assisted proton-transfer

mechanism that takes into account the suggested roles of the

GSH c-glutamyl carboxylate group and the active-site water

molecules. According to this mechanism, a water molecule acting

as a bridge is able to transfer the proton from the GSH thiol group

to the GSH c-glutamyl carboxylate group. Dourado et al. have

resorted to density functional theory and to potential of mean force

calculations to determine the GSH activation mechanism of

GSTP1-1 and GSTM1-1 isoenzymes [37]. For the GSTP1-1

enzyme, they have demonstrated that a water molecule can assist a

proton transfer between the GSH cysteine thiol and the GSH

glutamate alpha carboxylate groups. In the case of GSTM1-1

enzyme, two water molecules positioned between the GSH-SH

and the N atom of His107, working like a bridge, are able to

promote the proton transfer between these two active groups.

Arg34 in AtuGSTH1-1 occupies two alternative positions and

exhibits high crystallographic temperature factors, indicating

significant flexibility. In particular, in one conformation its

guanidium group interacts with the c-glutamyl carboxylate of

GSH forming an electrostatic interaction, while in the second

conformation with the sulfur atom of Nb-GSH (3.4 Å), the water

molecules W117 and W304, and the backbone carbonyl group of

bound Nb-GSH. Arg187 interacts with the water molecule W304

and forms a p-cation interaction with the benzyl group of Nb-

GSH. Hence, Arg34 and Arg187 appear to work as a bridge that

connects the two water molecules 304 and 117 (Figure 4). Wat304

might be a crucial element in the catalytic mechanism. In the

structure, Wat304 was found fixed by the guanidium group of

Arg187 with a hydrogen bond of 2.7 Å and with Arg34 with one

weak hydrogen bond (3.8 Å). The sulfur atom of Nb-GSH is 5.1 Å

away from Wat304. The residues Arg187 and Arg34 could,

therefore, function as a ‘clamp’ to grip Wat304 in a position to

form a hydrogen bond with the sulfonate group. Based on the

above analysis, in the case of AtuGSTH1-1, a putative bridge of a

network of water molecules in the region of an electron-sharing

network does exist as shown in Figure 4. Consequently, Arg34

may act as a catalytic residue for GSH activation.

In conclusion, in the present study we showed the structural and

functional characterization of the Atu3701 protein from A.

tumefaciens. Sequence and structural analysis indicated that

Atu3701 defines a new GST class. Based on the available GSTs

nomenclature and classification system the new class was classified

as the Eta class (H) and accordingly the enzyme was named

AtuGSTH1-1. Members of this class were found in soil bacteria

and more recently in a set of environmental sequences. Thus, this

structure most likely represents a larger family, whose size is

expected to grow further as the existing sequence databases

expand. AtuGSTH1-1 exhibits wide substrate specificity although

analysis of the catalytic efficiency (kcat/Km) suggests that

hydroperoxides may be its ‘natural’ substrates, indicating that

the enzyme may play important role in counteracting oxidative

stress conditions. Investigation of the crystal structure of

AtuGSTH1-1 in complex with Nb-GSH indicated that although

the enzyme adopts the canonical GST fold it lacks the classic

catalytic essential residues in GSTs (e.g. Tyr, Ser, Cys). This

characteristic distinguishes AtuGSTH1-1 from all other cytosolic

GSTs of known structure and function. Site-directed mutagenesis

showed that Arg34 may represent the catalytic residue. This

residue together with an electron-sharing network and a bridge of

water molecules are proposed to form the basis of the catalytic

mechanism.

Materials and Methods

Materials
Reduced glutathione, 1-chloro-2,4-dinitrobenzene (CDNB),

Nb-GSH and all other enzyme substrates and chemicals were

obtained from Sigma-Aldrich, USA. Molecular biology reagents

were purchased from Invitrogen, USA.

Cloning, expression, and purification of AtuGSTH1-1 in E.
coli

Cloning and expression of AtuGSTH1-1 in E. coli BL21(DE3)

cells was carried out as described previously [16]. Purification of

AtuGSTH1-1 was carried out as following: after expression, E. coli

BL21(DE3) cells were harvested by centrifugation at 10,000 g for

10 min (4uC), resuspended in potassium phosphate buffer

(50 mM, pH 8.0, 9 ml) containing sodium chloride (0.3 M),

sonicated, and centrifuged at 10,000 g for 20 min. The superna-

tant was collected and was loaded to a column of Ni-NTA

adsorbent (1 ml), which was previously equilibrated with potassi-

um phosphate buffer (50 mM, pH 8.0) containing sodium chloride

(0.3 M). Non-adsorbed protein was washed off with 10 ml

equilibration buffer, followed by 20 ml of potassium phosphate

buffer (50 mM, pH 6.2) containing sodium chloride (0.3 M) and

glycerol (10%, v/v). Bound AtuGSTH1-1 was eluted with

equilibration buffer containing imidazole in gradually increasing

concentrations of 5 mM, 20 mM, 0.1 M, 0.2 M and 0.5 M (total

volume of 10 ml). Collected fractions (2 ml) were assayed for GST

activity and protein (Bradford assay). Fractions with AtuGSTH1-1

activity were pooled and dialysed overnight against appropriate

Table 4. The effect of viscosity on kcat for the CDNB/GSH and
CuOOH/GSH reactions catalyzed by AtuGSTH1-1 and its
mutants.

Enzyme Slope (CDNB/GSH) Slope (CuOOH/GSH)

Wild-type 0.15160.003 0.33960.008

Phe22Ala 0.18960.003 0.26360.003

Ser25Ala 0.32560.008 0.31860.005

Arg187Ala 0.14060.005 0.27160.002

The slopes for the wild-type and the mutant enzymes were derived from the
linear plot of the relative turnover number (ko

cat/kcat) as a function of relative
viscosity (g/go) using glycerol as co-solvent.
doi:10.1371/journal.pone.0034263.t004
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buffer and was used for kinetics and structural analysis. Protein

purity was judged by SDS-PAGE.

Bioinformatic analysis
Multiple sequence alignment and phylogenetic analysis were

carried out as described by Skopelitou et al. (2012) [16].

Assay of enzyme activity and protein
Enzyme assays were performed according to Skopelitou et al.

[16]. Observed reaction velocities were corrected for spontaneous

reaction rates when necessary. All initial velocities were deter-

mined in triplicate in buffers equilibrated at constant temperature.

Turnover numbers were calculated on the basis of one active site

per subunit. One unit of enzyme activity is defined as the amount

of enzyme that catalyses the turnover of 1 mmol of substrate per

min. Specific activity is expressed in mmol ? min21 per mg of

protein. Protein concentration was determined by the Bradford

assay using bovine serum albumin (fraction V) as standard. Steady-

state kinetic measurements for the wild-type enzyme were

performed at 37uC in 0.1 M potassium phosphate buffer,

pH 6.5, over 10-fold varied substrate concentrations. Steady-state

data were fitted to the Michaelis-Menten equation by nonlinear

regression analysis using the GraFit (Erithacus Software Ltd.)

computer program.

Viscosity dependence of kinetic parameters
The effect of viscosity on kinetic parameters was assayed in 0.1

M potassium phosphate buffer, pH 6.5, containing variable

glycerol concentrations. Viscosity values (g) were calculated as

described in Wolf et al [38].

Site-Directed Mutagenesis
Site-directed mutagenesis was performed according to Ho et al

[39]. The pairs of oligonucleotide primers used in the PCR

reactions were as follows: for the Ser25Ala mutation, 59-

CGTTTTTGAACGCGCGCCCGATGGCGG-39 and 59- CC-

GCCATCGGGCGCGCGTTCAAAAACG-39 for the Phe22Ala

mutation, 59-CGATCACCGTTGCGGAACGCTCTCC-39 and

59-GGAGAGCGTTCCGCAACGGTGATCG-39, for the Ar-

g34Ala mutation, 59- GGTCTCGCGGCGGATATGCCG-39

and 59-CGGCATATCCGCCGCGAGACC-39, for the Ar-

g187Ala mutation, 59- CGTCTTACGCGCGCTGGAATCG-39

and 59-CGATTCCAGCGCGCGTAAGACG-39. All mutations

were verified by DNA sequencing. The mutant enzymes were

expressed and purified as described for the wild-type enzyme.

Crystallization
Prior to crystallization, AtuGSTH1-1 was concentrated to

4.85 mg/ml in buffer Tris-HCl 15 mM, pH 7.0 and mixed with

a 100 mM stock solution of S-(p-nitrobenzyl)-glutathione (10 mM

final concentration). Crystals were grown with the hanging drop

vapor diffusion method. The drops contained 2 ml of the protein

solution mixed with 2 ml of a well solution (1.4 M Na/K

phosphate, pH 8.3). The drops were equilibrated against 800 ml

of well solution at 16uC.

Structure determination and refinement
An initial data set to 1.4 Å resolution was collected on station

X13 at EMBL-Hamburg c/o DESY from a single crystal soaked

for a few seconds in crystallization solution supplemented with

20% v/v glycerol as cryoprotectant. The crystal was subsequently

placed in a gaseous nitrogen stream and flash-cooled directly at

100 K. A total of 250 images were recorded on a MARCCD

detector using a rotation angle of 0.5u and an exposure time of

10 seconds. Data were processed with XDS [40]. Crystals of

AtuGSTH1-1 were found to belong to the C2221 space group with

unit cell dimensions 49.4696.0688.4 Å. Assuming one molecule

in the asymmetric unit, the Matthews coefficient [41] is 2.3 Å3/

Da21, corresponding to 46.5% solvent content. Attempts to

determine the structure by molecular replacement did not produce

any clear solution as judged by the low Z-scores (below 5) in

PHASER [42] and the poor quality of the resultant electron

density maps. Initial phases were obtained by Br-SAD from a

single AtuGSTH1-1 crystal soaked with 1 M KBr for 45 seconds in

cryoprotectant solution. The crystal was subsequently flash-cooled

to 100 K in a stream of gaseous N2. A total of 600 diffraction

images were collected (l= 0.9 Å) to 2.01 Å resolution on the

BW7A beamline at EMBL-Hamburg (c/o DESY) using a rotation

angle of 0.5u, exposure time of 1 sec per image, and a MARCCD

detector. Data were processed with DENZO and Scalepack [43].

The search for Br atoms was performed with SHELX [44], which

identified an anomalous signal of 1.2 up to 2.4 Å resolution and

located 8 Br ions. Phasing with AutoSHARP [45] resulted in a

phasing power of 1.125 and an initial figure-of-merit of 0.3.

Following solvent flattening and density modification, ARP/

wARP [46] was able to build 202 residues in 3 chains out of 227

residues in total in the aminoacid sequence. Refinement was

initially carried out with REFMAC [47] and slowly extended to

1.4 Å in small steps of 0.2 Å. At the final stages of refinement, the

program PHENIX [48] was employed. No anisotropic B-factor

refinement was performed as the drop in Rfree was insignificant.

The structure was visualized and rebuilt using COOT [49].

MOLPROBITY [50] and PROCHECK [51] were used to

validate the structure. Structural superpositions were performed

with SSM [52] and analysis of interfaces with PDBePISA [53].

Protein Data Bank accession code
The final coordinates and the structure factors have been

deposited with the Protein Data Bank under the accession code

2ycd.
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