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Abstract

Background: Monitoring of insect vector populations with respect to their susceptibility to one or more insecticides is a
crucial element of the strategies used for the control of arthropod-borne diseases. This management task can nowadays be
achieved more efficiently when assisted by IT (Information Technology) tools, ranging from modern integrated databases to
GIS (Geographic Information System). Here we describe an application ontology that we developed de novo, and a specially
designed database that, based on this ontology, can be used for the purpose of controlling mosquitoes and, thus, the
diseases that they transmit.

Methodology/Principal Findings: The ontology, named MIRO for Mosquito Insecticide Resistance Ontology, developed
using the OBO-Edit software, describes all pertinent aspects of insecticide resistance, including specific methodology and
mode of action. MIRO, then, forms the basis for the design and development of a dedicated database, IRbase, constructed
using open source software, which can be used to retrieve data on mosquito populations in a temporally and spatially
separate way, as well as to map the output using a Google Earth interface. The dependency of the database on the MIRO
allows for a rational and efficient hierarchical search possibility.

Conclusions/Significance: The fact that the MIRO complies with the rules set forward by the OBO (Open Biomedical
Ontologies) Foundry introduces cross-referencing with other biomedical ontologies and, thus, both MIRO and IRbase are
suitable as parts of future comprehensive surveillance tools and decision support systems that will be used for the control of
vector-borne diseases. MIRO is downloadable from and IRbase is accessible at VectorBase, the NIAID-sponsored open access
database for arthropod vectors of disease.
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Introduction

Diseases transmitted by arthropod vectors and, in particular,

mosquitoes pose an immense load on global health, with malaria

alone being responsible for more than 46,000,000 DALYs

(Disease-adjusted Life Years); pertinent calculations are based

solely on official, yet largely incomplete statistical estimates [1],

and the global burden of falciparum malaria is nowadays estimated

by some to be lower than originally thought [2]. Nevertheless,

given the fact that arthropod-borne diseases affect mostly the

populations of tropical regions, these huge numbers directly imply

that their control is a conditio sine qua non for the socio-economic

development of many of the poor areas of the world. Control of

disease, then, directly entails the control of the arthropod vector

populations and, most prominently among them, mosquitoes. Of

course, economic development itself is one of the key players in the

control of vector-borne diseases, unfortunately leading to an

argument of a spiral form [3]. However, since the original

recognition of the causes of malaria and other tropical diseases,

campaigns aiming at eradicating vector-borne diseases included

environmental management [4], indoor residual spraying (IRS)

with the widespread use of DDT (Dichloro-Diphenyl-Trichloro-

ethane) or other insecticides [5,6], as well as the use of

impregnated nets (Insecticide-Treated Nets, ITN [7]; and Long-

Lasting Insecticide-treated Nets, LLIN [8]). These approaches,

combined with extensive use of drugs, soon led to the

disappearance of the disease from most non-tropical areas of the

world and notably Europe [9].

In spite of the initial wide successes achieved in the temperate

zones, eradication of vector-borne diseases proved to be elusive in
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the tropics. Moreover, the failure of vaccine development for

vector-borne diseases, with the exception of the relatively early

production of a vaccine directed against yellow fever [10],

complicated the strategies aimed at controlling these diseases.

Perhaps, most prominent among several problems that were faced

by the national and international public health agencies were the

occurrences of resistance relating to both parasites becoming

resistant to anti-parasitic drugs [11] and mosquitoes to insecticides

[12]. The gradual development of insecticide resistance against all

classes of insecticides used today soon after their introduction [13],

which was exacerbated by the use of such chemicals in agriculture

[14], is considered by some to be presently the most important

impediment in the successful control of vector-borne diseases.

Resistance to one or more insecticides used in vector control can

have a crucial impact on the management of arthropod vector-

borne diseases. In the case of ITN and LLIN measures [15,16],

monitoring of insecticide resistance needs to become a key

component for the efficient usage of control strategies [17].

Although overall data on pesticide resistance have been collected

over a long period of time [18–20], these often remain inaccessible

to public health workers around the world for a variety of reasons.

One of them is the lack of a central database tool that would

gather, store and exploit such data. Although pertinent studies are

often published in refereed journals, their accessibility is limited by

the use of restrictions, such as expensive subscription, something

that is of extreme importance to scientists from disease-endemic

countries, namely the very ones who urgently need to access these

data.

With this in mind we decided to develop IT tools that could

offer solutions to some of the problems and most importantly to

help monitor the occurrence of insecticide resistance in vector

populations; we decided to first focus on mosquitoes as these

represent the most important vectors of disease. Rather than only

expanding the simple repository of insecticide resistance studies

that we had previously developed [21], we decided to completely

restructure the database and support it by a dedicated ontology (or

controlled vocabulary). This type of tool, which among others

helps standardize terminology in a computer-comprehensible

form, has already proved its immense potential in cases such as,

most prominently, the Gene Ontology (GO) project [22]. Both the

ontology (hereafter called MIRO for Mosquito Insecticide

Resistance Ontology) and the novel, enhanced database (called

IRbase) are freely accessible to the research community through

their incorporation in VectorBase [23,24].

Materials and Methods

A Dell PowerEdge 850, with a dual core Intel Pentium D CPU

running at 3 GHz, 3 GB of RAM, and 150 GB of hard disk

storage was used for the development of IRbase. The operating

system used is CentOS 4.5 and the web service is handled by the

Apache server. Both MySQL and PostgresQL database servers

were used for data storage. Webpage scripts and command line

scripts are written in PHP. For PHP development we have been

using the Zend Development Environment (ZDE). The OBO-edit

software package [25] was used for the development of the MIRO.

To display the locations of the collection sites the Google Maps

API and maps are used. Geographic data are exchanged between

the applications using the Keyhole Markup Language (KML), a

data schema for annotating and visualizing two or three

dimensional maps. All coordinates are based on the World

Geodetic System (WGS) 84 projection standard.

Data are entered through the online AJAX web interface, which

is ontology based. Alternatively, submitters may send in their data

in Open Office (ods), Excel (xls), comma separated values (csv), or

tab separated values (tsv) files, which are processed and imported

into the database using PHP scripts.

The MIRO can be accessed and browsed at the URL http://

www.vectorbase.org/Search/CVSearch/ and its latest version can

be downloaded from http://anobase.vectorbase.org/miro/miro_

release.obo; it is also available through the OBO-Foundry at

http://obofoundry.org/cgi-bin/detail.cgi?mosquito_insecticide_

resistance; the home page for the IRbase is at the URL http://

anobase.vectorbase.org/ir/. Both MIRO and IRbase are freely

accessible. To access all necessary files for a local usage of IRbase

the authors should be contacted by e-mail (louis@imbb.forth.gr).

Results/Discussion

The MIRO ontology
For the construction of the MIRO we followed the rules

established by the OBO Foundry [26] in order to establish

maximum interoperability in the future. This implied the use, to

some extent, of already established ontologies, rather than the de

novo development of new ones, such as the geographical

component (see below). This decision obviously restricted the

usage of relations linking terms to those allowed by the OBO

Foundry rules and thus only is_a, part_of and agent_in are used

throughout [27]. We are convinced, though, that this choice

increases cross-ontology coordination and makes the tools

developed more amenable to integration in a suite of malaria

decision tools that are being developed.

The next choice we were faced with was the one of whether this

ontology should follow the ontological scaffold and the rules and

conventions described for the Basic Formal Ontology [28]. This

ontological arrangement is already used for a variety of biomedical

ontologies, including anatomical ontologies of disease vectors,

notably mosquitoes and ticks [29]. Although the obvious

advantages of a BFO-based ontology such as, for example, the

ease of expansion that is based on its modularity cannot be easily

discarded, we decided to initially design the MIRO on a more

‘‘traditional’’ scheme that would make it easily recognizable by

users who are not proficient in ontologies. The single reason for

this is to be able to provide the insecticide resistance community

with a module that can be easily incorporated into other IT tools

currently being devised. Nevertheless we are in the process of

Author Summary

It is a historical fact that a successful campaign against
vector populations is one of the prerequisites for
effectively fighting and eventually eradicating arthropod-
borne diseases, be that in an epidemic or, even more so, in
endemic cases. Based mostly on the use of insecticides and
environmental management, vector control is now in-
creasingly hampered by the occurrence of insecticide
resistance that manifests itself, and spreads rapidly, briefly
after the introduction of a (novel) chemical substance. We
make use here of a specially built ontology, MIRO, to drive
a new database, IRbase, dedicated to storing data on the
occurrence of insecticide resistance in mosquito popula-
tions worldwide. The ontological approach to the design
of databases offers the great advantage that these can be
searched in an efficient way. Moreover, it also provides for
an increased interoperability of present and future
epidemiological tools. IRbase is now being populated by
both older data from the literature and data recently
collected from field.
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transporting the MIRO into a BFO-based format in order to be

able to integrate that version in future constructs that would

potentially require such a layout.

MIRO is based on five top-level classes that actually form

independent sub-ontologies (see Figure 1); four of them, ‘‘biological

material’’, ‘‘insecticidal substance’’, ‘‘method’’ and ‘‘resistance’’, were

developed de novo by us explicitly for the MIRO. In Figure 1 (left

part) the ontology’s terms are shown in a depth of two levels with

the exception of the fifth class, the ‘‘gazetteer’’. This class represents

a full importation of the Gazetteer (GAZ), a controlled vocabulary

following ontological rules that describes named geographical

locations (http://darwin.nerc-oxford.ac.uk/gc_wiki/index.php/

GAZ_Project). GAZ is a community-based project of the EnvO

Consortium for describing instances of organism environments

and biological samples, supporting consistent annotation of

locations and environments. The Gazetteer describes places and

place names and the relations between them. Here, GAZ is

basically used to describe the locations of sampling. Although it is a

fully integrated component of MIRO, due to its size GAZ is not

incorporated as such in our ontology, but it is automatically loaded

through the Internet every time that one opens the MIRO using

the OBOedit software. At this moment the MIRO contains 4,291

terms excluding, of course, the GAZ component that contains

more than one hundred and fifty thousand geographical names

from all over the world; more than 99% of the MIRO terms have

full definitions. It should be noted that terms are not fixed and

more are being added as these become necessary.

Biological material. This class, the largest one in the MIRO

with 3,790 terms, describes all parameters that define the mosquito

populations investigated (Figure 2). Its two main nodes are self-

explanatory, one defining details of the population under study,

including the biological stages of the individual specimens

collected and sampled, as well as the kind of populations studied

(field or established laboratory stock), while the other eventually

defining the species under study (Figure 2A). As mentioned above,

we have restricted the taxa listed in the MIRO to mosquitoes as

these represent the main vectors of disease (e.g. Dengue, filariasis,

malaria, yellow fever, etc.). We will eventually restrict the species

of mosquitoes listed in the ontology to those that have already

been described as actual vectors, and expand the ontology to cover

non-mosquito vector arthropods (e.g. ticks, sand flies, etc.). For the

present compilation of the different mosquito taxa we used

primarily the Systematic Catalog of the Culicidae found at the

Walter Reed Biosystematics Unit (WRBU, http://www.

mosquitocatalog.org/species/taxonomy.asp). All taxa were linked

to their parents, i.e. to the respective subgenus and genus, by is_a

relationships and all synonyms listed in the WRBU catalogue were

also registered in the ontology. We have also gone beyond the

WRBU catalogue by including in the MIRO cryptic species such

as incipient species ‘‘sensu Coluzzi’’ or chromosomal and molecular

forms [30]. This obviously means that at present the S and M

forms of An. gambiae s.s., for which extensive studies are being

conducted, can equally be found in the ontology, and a particular

analysis can be annotated accordingly (Figure 2B). Should future

entomological research make it necessary to include similar data

for other insect species groups the ontology can naturally be

expanded in this respect.

Insecticidal substance. Two ‘‘catalogues’’ are available for

the construction of the sub-ontology defining insecticides. These are

ChEBI an open ontology of Chemical Entities of Biological

Importance [31] and the IRAC catalogue (http://www.irac-online.

org/eClassification/) a structured vocabulary compiled by the

Insecticide Resistance Action Committee (http://www.irac-online.

org/). Upon our request, the ChEBI group included in their

ontology all insecticides listed by IRAC, and it now represents an

optimal controlled vocabulary for those substances that could be

used in the MIRO. Nevertheless, the IRAC eClassification list has

the advantage of being immediately recognized and accepted by the

IR (Insecticide Resistance) community as standard reference. Its

structure is based on the mode of action of the individual insecticides

but, to some extent, it is rather problematic on the level of an

ontology. For example, it is based on a fairly rigid classification that,

among others, leads to nameless or ‘‘non-existent’’ classes, or to

classes that are not definable on either chemical or functional level

(e.g. a class of compounds of ‘‘unknown mode of action’’ or a class of

‘‘miscellaneous non-specific inhibitors’’ [sic]. Nevertheless, given 1)

the familiarity of the IR community with this classification and 2)

the fact that the MIRO is meant to be an application ontology, we

Figure 1. The upper levels of the MIRO. The figure shows the
upper levels of the ontology. The small circles denote an ‘‘is_a’’ relation
between the term and its parent, and small rectangles show the
presence (plus) or absence (minus) of children for a given term. The
children of the four ‘‘biological material’’, ‘‘insecticidal substance’’,
‘‘method’’ and ‘‘resistance’’ are shown in a depth of 2 levels. The
‘‘gazetteer’’ class has been loaded into MIRO (see Results and
Discussion) and is therefore visible here.
doi:10.1371/journal.pntd.0000465.g001
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decided to use this, after some reorganization, as the primary

scaffold for the construction of the ontology (Figure 3). All

insecticides were, nevertheless, cross-referenced to ChEBI, as this

ontology already represents the key ontology that links biology to

chemical substances. The reason for cross-referencing, rather than

using the ChEBI ID codes is to be found in the fact that in the

MIRO all insecticides are defined, which is not the case for ChEBI.

A total of 22 different modes of action were retained for the

classification of insecticides developed and included in the IRAC list

effective December 2008. Finally we also included in the ontology a

class containing synergists; two pertinent groups of synergists were

listed in previous versions of the IRAC eClassification, but are no

longer present. In spite of this, we incorporated them in the MIRO,

given their potential significance in the actual usage of insecticides.

Figure 2. The ‘‘biological material’’ class. The figure shows, in a depth of 5 levels, the class ‘‘biological material’’ (A) and, within the ‘‘Cellia’’
subgenus, the Anopheles gambiae s.s.-related terms (B), that also include the chromosomal and molecular forms.
doi:10.1371/journal.pntd.0000465.g002
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The ‘‘Insecticidal substance’’ class now contains 287 terms across all

groups of substances.

Resistance. This class (73 terms), somewhat hindered by the

jargon used by the IR community, lists all mechanisms known at

this time. The four main categories used are behavioral and

metabolic resistance, resistance due to changes in the permeability

of the insect’s cuticle and, finally, target-site resistance (Figure 4).

Both ‘‘behavioral resistance’’ and ‘‘cuticle permeability related resistance’’

only list two self-explanatory children each: ‘‘stimulus-dependent’’ and

‘‘stimulus-independent’’ for the former, and ‘‘enhanced excretion’’ and

‘‘reduced penetration’’ for the latter. In contrast, the remaining two

classes are more complex. The ‘‘metabolic resistance’’ class includes

different facets of resistance connected to qualitative and

quantitative changes of the activity of carboxyesterases (COE)

and glutathione S-transferases (GST) and P450 monoxygenases.

Furthermore a single child describes resistance due to modified

midgut protease activity, i.e. processes related to the usage of

biological insecticides such as the ones derived from Bacillus

thuringensis or B. sphaericus. Finally target site resistance deals with

known described mutations of specific genes.

Method. The final class was to some extent a problematic

one. The reason for this was not the actual ontology construction

but, rather, a problem of orthogonality. This class covers most, if

not all methods that are directly used for the analysis of insecticide

resistance in a mosquito population (a total of 137 terms). The

methods vary from catch methods for field populations to

molecular biological techniques (see Figure 1). While the former

are straightforward and relatively easy to catalogue the latter pose

certain dilemmas. These range from the terms used as such (e.g.

‘‘bioassay’’ or ‘‘biochemical assay’’ which may be too general) to the

question of whether terms such as ‘‘real-time PCR’’ or ‘‘RT-PCR’’

that are outside the ‘‘narrow’’ field of insecticide resistance should

be included. We decided eventually to include all techniques that

are routinely used for the analysis of insecticide resistance. The

choice was made based on the fact that the ontology OBI (personal

communication, the OBI Consortium http://purl.obofoundry.

org/obo/obi), which is currently being developed and which will

describe life science and clinical investigations, is far from

completion, and the MIRO would be missing a crucial

Figure 3. The groups of insecticides in MIRO. The figure shows the list of the groups of substances with differing modes of action containing
the individual insecticides.
doi:10.1371/journal.pntd.0000465.g003

Figure 4. The ‘‘resistance’’ class. The ‘‘resistance’’ class has been
opened to show the different contents. The black boxes denote an
‘‘agent_in’’ relation.
doi:10.1371/journal.pntd.0000465.g004
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component if we were to exclude the relevant terms. Similar

limitations existed for the techniques used for species identification

and here we decided to keep the terms general without going into

details. The species identification part is short and only describes

the seven most common ways of identifying individual mosquito

species. These include classical procedures (chromosomal banding

patterns, cross mating experiments, morphology, and salinity

tolerance tests) as well as biochemical (isozyme electrophoresis)

and molecular (DNA probes, PCR). Of course, like is the case for

all components of the MIRO, the ontology can be expanded or

changed accordingly in the future if changes are deemed

necessary.

The IRbase database
Based on feedback from the malaria entomology research

community it was decided several years ago to include in AnoBase,

the Anopheles database [21], a section on insecticide resistance; this

tool was later transferred to and included in VectorBase [23,24]

after this comprehensive genome database was established. The

section consisted only of a series of manually-curated, already

published studies; its role, therefore, was mostly to make data

available to the community in a fashion that would be independent

of the need for a library, rather than a use as an on-line

epidemiological tool. The new IRbase in contrast is meant to serve

as an expanding repository of associated data, which can be

searched in a detailed fashion, thus providing immediately

applicable information. Furthermore, IRbase now covers vectors

of more diseases than the previous database that was only restricted

to malaria. These are the reasons for designing a relational schema

de novo (see Figure 5). It was our intention to design a schema that

would easily enable both the addition of novel tables and the

incorporation of IRbase into a larger and more complicated entity,

which could be expanded later to encompass additional items linked

to the control of vector-borne diseases.

The nine distinct tables can be distinguished in two major

categories: While two of them (cv_term) handles all MIRO terms,

including GAZ, and their relationships, the remaining are there to

handle, mostly, ontology-independent items. These include, most

prominently, description of the study in terms of details of the

collection site, the mosquito population sampled (including

collection dates, etc.) and the assay(s) performed. The ‘‘household’’

table is presently not in use by IRbase, but it has been included by

request as it could be needed by decision support systems currently

under development for Dengue and malaria [32]. The schema

allows for a high degree of interoperability due to the enhanced

usage of the ontology component, and it enhances the two

distinctive features of IRbase, i.e. the two interactive components,

search and curator’s tool, both of which are accessible through a

simplified web interface.

In addition to the completely new architecture of the database

and to the fact that the software used is free and open source,

IRbase has some key characteristic features: i) The data are stored

in the database using MIRO terms wherever possible; ii) the Gaz

geographic ontology is used for storing location data and the

output can be viewed using maps; iii) extensive use of Ajax

(Previously AJAX: Asynchonous JAvascript XML) is made in

order to minimize network traffic and improve look and feel [33].

Moreover IRbase was built around basic entities:

1. ‘‘Study data’’ - a storage space for the data pertaining to an

individual ‘‘study’’. The ‘‘study’’ could be an entire study,

Figure 5. The IRbase schema. The figure shows the different tables that make up the schema. 1 and * denote a ‘‘one to many’’ relationship.
doi:10.1371/journal.pntd.0000465.g005
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previously published or not, on an entire population or parts

thereof, pertaining to one or more insecticides; the pertinent data

would include the ‘‘owner’’ of the particular data, time it was

carried out, the publication record when available, etc.

2. ‘‘Collection site’’ - common names of the collection site(s),

their alias(es) and, most importantly, the geographic coordinates.

Should these not be available through the submitter of the data,

the IRbase curators will assign values based on available

information and feedback. For those names that already exist in

Gaz the Gaz ID is also stored.

The alias is an ID that the submitter can use for faster data

entry: the collection site needs to be defined once and from

thereon the alias can be used to identify that particular site.

Collection sites that have no Gaz ID are exported and sent to the

curators of that ontology for ID assignment.

3. ‘‘Insect collections’’ - this area holds information such as the

species name, the collection date, the catch method, the sex, food

state etc. of the specimens (field collected or lab bred) that were

subsequently used to test resistance.

4. ‘‘Assay data’’ - The actual data expressing the findings and

referring to the methods used, the conditions (insecticide

concentration) and the results of an assay, etc.

The user interface. A brief manual is presented along with

the search forms. There are two ways for entering search

parameters into them. The first one is to use the drop-down

menus and find the requested term by following the correct path.

This obviously implies that the user is familiar with the MIRO or

has a good knowledge for some of the properties of the requested

term. For example, to find the insecticide ‘‘deltamethrin’’, the user

must know that this insecticide belongs to the pyrethroid family

and that this family of insecticides modulates sodium channels.

Alternatively, auto-complete input boxes can be used. In these

boxes the user needs to type two letters from the requested term

and a list of all possible matching terms will appear. As more

letters are typed the search is narrowed down to the decreasing

number of options in the list. When the requested term appears on

the list it can be clicked on and it will now appear in the input box.

All terms are listed alphabetically in both the drop-down and the

autocomplete menus.

Search criteria include species sites, year of collection, pertinent

insecticide resistance mechanism, assay method, mosquitoes used,

catch method and more. One criterion only may be used, or any

combination of two or more of the above criteria. With the

exception of the year of collection all remaining search criteria are

ontology-based searches. As a result of this, the search algorithm

implemented will also search for all the descendant terms of the

term specified, and therefore searches can be narrowed in the

process. Returned data are presented in descending chronological

order, regardless of whether the collection year was set as a search

criterion or not.

Users who want to utilize IRbase’s data to run their own tests

can set their export criteria and obtain the relevant data in a tab

separated values (tsv) text file. This file can be opened in any

spreadsheet application or be imported into a database.

Maps. In addition to the text-based interface to view data,

IRbase also provides a map-based interface to access the same

data (Figure 6). This interface utilizes Google Maps to visualize the

data and is very rich in features such as grouping by color,

zooming in and out, adding layers of related data, etc. By clicking

at the collection sites marked on the map, a pop up balloon will

appear with the same data, but also with a link to a detailed report

(Figure 3). The map tool fully depends on the availability of

geographical coordinates. As some of the older data are not linked

to such information, this will have to be supplied manually by the

IRbase curators before these studies can be incorporated. When

the page is first loaded, a world map with all the collection sites

spotted with small markers will appear. After leaving the mouse

pointer on one of these markers, one line of text will appear

displaying some of the information regarding the particular

collection site such as species name, collection dates, and

insecticide used. We stress here that the map section is

continuously being improved in order to provide the users with

a ‘‘friendlier’’ tool.

Data input. Data can be submitted to IRbase either online,

via a web interface, or offline, using a spreadsheet template. These

tools are available to the community upon request. Similarly a

streamlined edition of the user and submitter/curator interface as

well as the database can be loaded onto a laptop for offline data

entry. This offers the advantage of a ‘‘limited’’ usage of IRbase

even under conditions of limited access to the Internet (e.g. field

trips). Again, users wanting to take advantage of this facility can

contact VectorBase in order to obtain a user name and password.

Conclusion
We described here a set of IT tools to be used for the analysis of

insecticide resistance in wild populations of insect disease vectors

and in particular mosquitoes. The concept of intimately linking a

dedicated database to a specific application ontology describing

the field offers the advantage that the database can later be easily

expanded to include additional items and offer further tools. This

fact, in our case, can form the overall foundation or one of the

pillars of a comprehensive tool, which could be used to globally

monitor insecticide resistance; this would form the basis for a

global decision support system for malaria and/or other vector-

borne diseases.

A database on insecticide resistance, the Arthropod Pesticide

Resistance Database (APRD), can already be found in the world

wide web (http://www.pesticideresistance.org/). APRD covers a

large variety of arthropods, but its philosophy is different from the

one of IRbase. It provides reports of instances of occurrence of

resistance, without any precision as to the exact location and the

actual data. Although useful as a general indicator of resistance,

especially in the domain of agriculture, the lack of geographic

accuracy, combined with the lack of a map interface makes this

database less suitable as a tool that could be used either by itself, or

in combination to a modern, IT-based decision support system.

Such decision support systems are considered to be a

prerequisite for the efficient control of insect vector populations.

Many potential components of such systems have been described

(see for example [32,34–35]), especially components that are based

on GIS. Our tool has for the moment the capacity to depict data of

insecticide resistance on a map provided the geographic

coordinates have been incorporated in the data collection. Since

many of the data that will populate IRbase are old, some of the

coordinates will have to be input manually; once this has been the

case, it will be possible to link all available information to maps

based on, and retrieved from Google Earth.

The MIRO/IRbase set of tools is presently focused completely

on insecticide resistance linked to mosquitoes of medical

importance. The open source policy linked to the MIRO, an

ontology that abides with the OBO Foundry rules, makes it easy to

further develop these tools in order to later include data of

agricultural interest as well, should an interested party turn up. In

that sense one should also consider the fact that development of

resistance detected in disease vectors can often be traced back to

the often-improper use of insecticides in agriculture (see [36] for a

discussion of that problem).
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We are currently in the process of populating IRbase with both

data from the literature and data that are being collected from the

field. This is done in collaboration with the international

community in the frame of large consortia (e.g. African Network

on Vector Research, Innovative Vector Control Consortium,

WHO/Gates Foundation Vector Biology and Control Project,

etc.), as well as on the basis of smaller individual research

networks. We hope that, this way, IRbase will soon be established

as the global repository for data insecticide resistance.
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