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ΣΥΓΧΡΟΝΕΣ ΜΕΘΟΔΟΙ ΕΚΤΙΜΗΣΗΣ ΓΕΝΕΤΙΚΩΝ 
ΠΑΡΑΜΕΤΡΩΝ ΣΕ ΠΛΗΘΥΣΜΟΥΣ ΚΡΕΟΠΑΡΑΓΩΓΩΝ 

ΟΡΝΙΘΙΩΝ
ΜΑΝΙΑΤΗΣ ΓΕΡΑΣΙΜΟΣ

Τμήμα Επιστήμης Ζωικής Παραγωγής και Υδατοκαλλιεργειών, Εργαστήριο 
Γενικής και Ειδικής Ζωοτεχνίας, Ιερά Οδός 255, ΤΚ 11855, email: acom  @  aua  .  gr  

Περίληψη
Πραγματικά  και  προσομοιωμένα  δεδομένα  που  ακολουθούσαν  κανονική  και 

διωνυμική κατανομή αναλύθηκαν χρησιμοποιώντας τη μέθοδο της υπό περιορισμό 
μέγιστης  πιθανοφάνειας  καθώς  και  δύο  μεθόδους  Bayes (MCMC και  INLA).  Τα 
αποτελέσματα της εργασίας δηλώνουν την χρησιμότητα της εφαρμογής των MCMC 
στη διερεύνηση συνδιακυμάνσεων  μεταξύ  τυχαίων  επιδράσεων.  Η μέθοδος  INLA 
φαίνεται  να  αποτελεί  μία  εναλλακτική  μέθοδο  Bayes γρήγορη  και  χρήσιμη  για 
ανάλυση  δεδομένων  που  ακολουθούν  κανονική  κατανομή.  Για  την  επιλογή  του 
καταλληλότερου στατιστικού προτύπου ανάλυσης μία σειρά κριτηρίων έχει προταθεί. 
Εκτός από τα κριτήρια Akaike και BIC, στη συγκεκρίμενη μελέτη εφαρμόστηκε και 
το  cAIC το οποίο λαμβάνει πιο αποτελεσματικά υπόψιν τους δραστικούς βαθμούς 
ελευθερίας  και  όπως  προέκυψε  από  τις  αναλύσεις  είναι  δυνατό  να  προτείνει 
διαφορετικά  πρότυπο.  Εξετάσθηκε  η  συνεισφορά  των  γενετικών  επιδράσεων  στο 
φαινόμενο  του  φυλετικού  διμορφισμού  του  βάρους  κρεοπαραγών  ορνιθίων, 
χρησιμοποιώντας διμεταβλητά πρότυπα ανάλυσης αλλά και δευτερογενείς ιδιότητες 
που λάμβαναν υπόψη τη διαφορά και το λόγο των σωματικών βαρών αρσενικών και 
θηλυκών  ατόμων.  Για  το  σκοπό  αυτό,  χρησιμοποιήθηκε  ένας  μεγάλος  αριθμός 
δεδομένων,  αποτελούμενος  από  203,323  ατομικές  αποδόσεις  σωματικών  βαρών 
κρεοπαραγωγών  ορνιθίων.  Το  καλύτερο  πρότυπο  περιελάμβανε  προσθετικές 
γενετικές, μητρικές γενετικές και μητρικές περιβαλλοντικές επιδράσεις καθώς και τη 
συνδιακύμανση  μεταξύ  προσθετικών  και  μητρικών  γενετικών  επιδράσεων.  Ο 
συντελεστής  κληρονομικότητας  δεν  παρουσίασε  διαφορές  μεταξύ  αρσενικών  και 
θηλυκών (0.28  vs. 0.29). Μόνο ο συντελεστής συσχέτισης μεταξύ προσθετικών και 
μητρικών  γενετικών  επιδράσεων  διέφερε  ανάμεσα  στα  φύλα  (-0.72  vs.  -0.56  για 
αρσενικά και θηλυκά βάρη, αντίστοιχα), υποδεικύοντας έναν πιο έντονο ανταγωνισμό 
μεταξύ προσθετικών και μητρικών γενετικών επιδράσεων για τα αρσενικά.  Τέλος, 
χρησιμοποιήθηκαν επιπλέον 35,595 αποδόσεις βαρών κρεοπαραγωγών ορνιθίων στις 
35  ημέρες  υπό  δυσμενείς  μικροβιακά  συνθήκες  για  τη  διερεύνηση  της  ύπαρξης 
αλληλεπίδρασης γονοτύπου περιβάλλοντος.  Τα αποτελέσματα της μελέτης έδειξαν 
την ύπαρξη χαμηλού συντελεστή προσθετικής γενετικής συσχέτισης μεταξύ των δύο 
περιβαλλόντων,  κυμαινόμενου  μεταξύ  0,28  και  0,45  ανάλογα  το  πρότυπο, 
υποδηλώνοντας την ύπαρξη ισχυρής αλληλεπίδρασης γονοτύπου περιβάλλοντος για 
τη συγκεκριμένη ιδιότητα στον υπό εξέταση πληθυσμό.
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1. General Introduction
As poultry consumption is projected to grow at 2.5 percent  per annum  to 2030 

(FAO, 2008) there is an increasing demand for poultry meat and eggs in many parts of 
the  world.  This  demand  favors  the  industrialization  of  the  production  systems.  The 
poultry sector is the most industrialized of all forms of livestock production and large-
scale production is now widespread in many developing countries. Global production of 
chickens  has  experienced  massive  change  and  growth  over  the  past  50  years.  The 
commercial broiler and layer markets produce more than 40 billion birds annually to 
meet current worldwide consumer demands of more than 61 metric tons of meat and 
more  than 55 million  metric  tons  of  eggs.  Production has increased by 436% since 
1970, more than 2.3 times and 7.5 times the corresponding growth in swine and beef, 
respectively (FAO, 2008). 

Only  a  few  multinational  breeding  companies  currently  remain  as  genetic 
suppliers  of  the  majority  of  the  commercial  birds.  While  in  the  1960s  there  were 
hundreds of breeding companies with significant market influence, by 1980, 13 broiler 
breeding  companies  remained  and  by  2001  only  four  independent  groups  with 
significant world market shares had survived (Besbes  et al., 2008). During the same 
time span, genetic improvement shifted from selection applied available chicken breeds 
to  introduction  of  line  specialization  and  crossbreeding,  both  stimulated  by  earlier 
developments in plant breeding. Literally, it was the degree of successful introduction 
of crossbreeding along with the ability to foresee the forthcoming changes in the market 
place that  caused the number of breeding companies to reduce rapidly (Muir  et al., 
2008).  

Breeding efforts have dramatically increased meat poultry efficiency and it has 
been  estimated  that  80-90% of  the  progress  over  time  has  been  made  possible  by 
improvement  of  the  genetic  potential  (Havenstein  et  al.,  1994).  The  growth rate  of 
modern broilers has roughly quadrupled since commercial breeding commenced in the 
20th century. By the year 2000, the broilers' body weight reached 2.5 kg at 42 days of 
age with 1.75 feed conversion ratio (Besbes et al., 2008). The body composition of the 
birds has also changed dramatically with broilers having more breast and thigh muscle, 
a relatively high proportion of abdominal fat and smaller spleen and heart weights than 
traditional  lines (Sandercock  et al.,  2009). A variety of selection traits  are currently 
being used, such as hatching egg production, growth rate, feed efficiency, meat yield 
traits, liveability and leg and skeletal length (Besbes et al., 2008). Differential selection 
pressure to the previous traits is being applied according to the market demands (live 
broilers, live/dress broiler or deboned market).

For  broilers,  further  genetic  gains  are  still  pursued  via  multi-way  approaches 
among which is the application of more sophisticated statistical methods as well as the 
application  of  genomic  selection  (GS).  During  the  last  few  years,  GS  has  greatly 
evolved and expectations are high. Although still costly, major breeding companies will 
use it to improve traits showing low levels of additive genetic variance such as disease 
resistance  and  robustness.  At  the  same  time,  Quantitative  Genetics  is  enriching  its 
armamentarium with more sophisticated mathematical  models  as well  as appropriate 
statistical procedures for estimation and model evaluation.

From the  early  developments  such  as  the  Henderson's  mixed  model  equations 
(1959), Animal Breeding has traditionally been at the forefront of the application of 
sophisticated statistical methods. The lack of appealing of these methods along with the 
shift  in  funding  away  from  quantitative  genetics  to  almost  exclusively  molecular 

1



genetics  have  led  to  a  significant  shortage  of  quantitative  geneticists  and  another 
endangered species (Misztal, 2007) in need to be preserved.   

Accurate genetic evaluation remains a topic of major interest, both scientifically 
and commercially. Specifically, accurate prediction of breeding values (BVs) is of great 
importance since a few selected animals have a major influence on the genetic progress 
of  the  whole population.  A  two-stage  procedure  is  typically  being  employed:  first, 
estimation of the variance components  is  performed followed by  prediction  of BVs. 
There are two ways to accomplish the above tasks. The first is based on the concept of 
the likelihood while the second on probability (Bayesian approach). For the frequentist 
breeder, the standard methods for VCE and prediction of BVs are REML (Patterson and 
Thompson,  1971) and BLUP (Henderson, 1975), respectively.  Markov  Chain Monte 
Carlo (MCMC) methods  (Gelfand and Smith,  1990) have enormously increased  the 
applicability of the Bayesian approach. These methods are computationally demanding 
and  time  consuming  procedures  and  this  has  been  the  main  hindrance  to  their 
application in animal breeding. Recently, a non-sampling based alternative to MCMC, 
the Integrated Nested Laplace Approximation (INLA) has been introduced (Rue et al., 
2009).  Because INLA is based on direct numerical integration instead of simulations, it 
is much faster than MCMC and might represent an attractive alternative to REML for 
the  animal  breeder.  Studies  examining  the  relative merits  of  all  the  three  methods 
(REML, Gibbs sampling and INLA) for VCE and estimation of BVs using field and 
simulated  data  following both  normal  and binomial  distributions  have  been  lacking 
from the literature. The second chapter was designed to provide valuable knowledge in 
this direction.  

Various model selection procedures have been proposed thus far. Perhaps the most 
commonly used are the likelihood ratio test (LRTs) and two information criteria: the 
Akaike  Information  Criterion  (AIC;  Akaike,  1973) and the  Bayesian  Information 
Criterion  (BIC;  Schwarz,  1978).  For  the  information  criteria,  a  major  issue  when 
comparing  different  models  is  the  appropriate  choice  of  the  penalty  term  when 
penalizing for the complexity of  the  models.  The determination of the number of the 
model parameters is non-trivial when random effects are estimated using methods such 
as BLUP. On this occasion,  model  parameters  could range from a small  number  of 
variance components to the complete number of random effects involved. Vaida and 
Blanchard (2005) defined a model evaluation criterion, the conditional AIC (cAIC) that 
effectively accounts for the complexity of the models by utilizing the effective degrees 
of freedom ρ (Hodges  and Sargent,  2001).  The use of  cAIC  as  a  model  evaluation 
criterion has not hitherto been explored in the context of animal breeding.  It is first 
introduced and studied in the third chapter of the present PhD thesis. 

The accurate  estimation  of  genetic  parameters  presumes sufficiently  large  data 
sets, with desirable data structure(s). In meat poultry, an exhaustive description of the 
various random effects that  may affect  phenotypic  expression of traits  such as body 
weight  (BW) is  only possible  when there are  enough half  and full-sib families  and 
adequate dam-offspring pairs with records. Only structures of this kind may allow for 
accurate and reliable estimation of the maternal genetic effects and the direct-maternal 
covariance. Very few attempts have been made to partition the maternal variance into 
genetic  and environmental  components,  in  poultry (Koerhuis  and Thompson,  1997). 
BW at slaughter remains a trait of major economic importance since it relates to growth 
rate and meat yield.  The trait in question shows considerable inter-sexual variation i.e. 
sexual  dimorphism  (SD)  the  genetic  basis  of  which  is  rather  poorly  investigated. 
Chapters 3 and 4 were designed to provide reliable estimates of maternal (genetic and 
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environmental) effects, as well as of the direct-maternal covariance (correlation). Age 
(chapter 3) and sex-specific (chapter 4) analyses for the trait itself as well as for sex 
combinations that describe SD were estimated (chapter 4).  

Most of the improvement process is carried out in breeding companies located in 
temperate regions. Products are then marketed worldwide – including tropical,  semi-
arid and arid regions where conditions are challenging in terms of climate, husbandry, 
feeds and feeding practices as well as hygiene conditions. A problem usually faced here 
is genotype by environment interaction (GEI). When present, the relative advantages of 
genotypes may differ from one environment to the other, in such a way that it could 
become necessary to choose specific genotypes for specific environments. In order to 
account  for  GEI,  breeding  companies  either  test  their  animals  across  a  range  of 
environments or establish satellite breeding programmes in various locations. GEI may 
arise  from various  environmental  conditions  such  as  nutritional  (Havenstein  et  al., 
1994), climatic (e.g.  Cahaner and Leenstra, 1992) or hygiene (e.g.  Banos et al., 2006) 
levels. The latter can potentially have a dramatic impact on the performance of broilers 
and there seems to be minimal relevant information reported in the literature, at least 
from a quantitative genetics viewpoint. The fifth chapter investigates the importance of 
GEI  arising  from  hygiene  conditions  and  examines  whether  sex-specific  breeding 
policies are necessary to accommodate this interaction.
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2. An old question still seeking for an answer: REML or Bayes?
2.1 Summary
REML has become the standard  method of  variance components  estimation  in 

animal breeding. Inference in Bayesian animal models is typically based upon Markov 
Chain Monte Carlo (MCMC) methods which are generally flexible but time consuming. 
Recently,  a  new  Bayesian  computational  method,  Integrated  Nested  Laplace 
Approximation  (INLA),  has  been  introduced  for  making  fast  non-sampling-based 
Bayesian inference for hierarchical Gaussian Markov models. This paper is concerned 
with  the  application  and  comparison  of  estimates  provided  by  the  three  methods 
(REML,  MCMC  and  INLA)  using  three  representative  programs  (ASREML, 
WinBUGS and the R-package AnimalINLA) to the methods. A dataset comprising of 
2,319 body weight records of a commercial line of broiler chicken was used. Both, a 
normally distributed trait i.e. body weight at 35 days of age (BW) and a binary response 
trait (after transformation of the Gaussian trait, assuming a 20% value as the threshold 
value), were explored. All model evaluation criteria suggested a purely additive animal 
model, in which the heritability estimates ranged from 0.31 to 0.34, for the Gaussian 
trait, and from 0.19 to 0.36 for the binary trait, depending on the software. WinBUGS 
revealed the existence of a small negative correlation between the additive genetic and 
maternal  environmental  effects  (-0.20) that  is  usually neglected during REML-based 
analyses  and may have  an  effect  on  parameter  estimation.  A simulation  study was 
conducted based upon the results of the real  dataset  (Gaussian case),  exploiting two 
scenarios  of  correlation  between  direct  genetic  and  maternal  environmental  effects. 
Results  suggest  that  while  WinBUGS  appeared  to  successfully  accommodate  more 
complicated structures between the various random effects, REML remains a fast and 
accurate  procedure  with  general  applicability.  Although  in  need  for  further 
development,  AnimalINLA  seems  a  fast  program  for  Bayesian  Animal  modelling, 
particularly suitable for inference of Gaussian traits. 

2.2 Introduction
The Restricted Maximum Likelihood (REML) method (Patterson and Thompson, 

1971) for unbalanced mixed models has been extensively used in animal breeding and 
has become the standard method for the estimation of variance components estimation. 
The  Bayesian  Markov  chain  Monte  Carlo  (MCMC)  methods  were  introduced  in 
quantitative  genetics  in  the  early  1990s  (Wang  et  al. 1993;  Sorensen  et  al. 1994), 
facilitated by the development of the Gibbs sampling procedure (Geman and Geman 
1984;  Gelfand  and  Smith  1990).  The  Gibbs  sampler  successively  samples  from 
conditional  distributions of all  parameters in a model in order to generate  a random 
sample of the marginal posterior distribution, which is the target for Bayesian inference. 
MCMC  methods  represent  the  standard  inference  procedure  for  Bayesian  animal 
models  (Sorensen  and  Gianola,  2002)  and  through  the  years  they  have  become  an 
attractive alternative to REML. Recently, a non-sampling based alternative to MCMC, 
the Integrated Nested Laplace Approximations (INLA) has been introduced (Rue et al., 
2009). Using INLA, marginal posteriors for all parameters and random effects can be 
calculated.  Because  INLA  is  based  on  direct  numerical  integration  instead  of 
simulations, it is much faster than MCMC (Rue et al., 2009). Furthermore, Holand et al. 
(2011) have developed an R package (AnimalINLA) making Bayesian animal models 
more accessible to animal breeders.

Several  programs  are  available  for  MCMC  methods,  but  very  few  provide  a 
flexible environment.  WinBUGS (Lunn  et al. 2000) is the most  well-developed and 
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general-purpose Bayesian software available to date. It has an interactive environment 
that  enables the user to specify models that  need to be compiled before starting the 
Gibbs sampling. Convergence diagnostics, model comparisons, e.g. via DIC, and other 
useful  plots  and  diagnostics  are  available.  Several  distributions  can  be  used  for 
modelling the observations as well  as priors, while  full  conditional  distributions  are 
automatically constructed and the appropriate MCMC algorithm for sampling is chosen 
(Lunn et al., 2000). The importation of the animals’ genetic relationships has been an 
issue in WinBUGS and several attempt to this direction have been made (Damgaard, 
2007;  Waldmann, 2009). However, these methods either required prior transformation 
of the data using complex code or did not provide a generic procedure independent of 
the data structure. To accommodate the problem, Gorjanc (2010) suggested the use of 
the inverse of the numerator relationship matrix A-1 directly through the diagonal values 
of W-1 matrix, where 1111 )( −−−− ′= TWTA (Henderson, 1976; Quaas, 1976). 

The primary goal of this study was to investigate the relative merits of the three 
methods (REML, Gibbs sampling and INLA) in the context of animal breeding, using 
representative programs such as ASREML 3.0 (Gilmour  et al., 2009), WinBUGS and 
AnimalINLA. For this purpose, a Gaussian and a binary trait were both explored and 
variance  components  as  well  as  the  genetic  parameters  along  with  breeding  values 
across the three methods were estimated and compared. Moreover, a simulation study 
was  conducted  in  the  case  of  a  Gaussian  trait,  under  two  different  scenarios  of 
correlation ( ucr ) between the direct genetic and the c2 effects.

2.3 Materials and methods
2.3.1 Data description 
Data on body weight  (BW) at  35 days  of  age  from a broiler  line  were  made 

available  by Aviagen Ltd.  The  dataset  consisted of  2,319 records  comprising  1,171 
males and 1,148 females in 41 hatch weeks, while the pedigree included a total of 2,456 
animals. To make results directly comparable, all phenotypic values were standardized 

to the standard normal distribution via
0

0

y

yy
y

σ
−

= , where y ~ N(0, 1) the standardized 

BW, y0 the original phenotypic values of  BW, y  the mean BW in the population and 

0yσ  the standard deviation of BW. A preliminary analysis of variance showed that the 
statistically significant fixed effects (P<0.05) included hatch week and sex. Hence, these 
fixed effects were included in all models. Every female was mated with at least 2 males 
producing from 2 to 57 offspring with records, while the 32 sires were mated with 2 to 7 
females  and produced 2 to 97 offspring.  This  structure enables the estimation  of c2 

effects through proper modeling and this was pursued in both the real and simulated 
data. 

A  binary  response  trait  was  also  built,  using  the  original  BW  values  and  a 
threshold at the highest 20% phenotypic values. Thus, the new variable y20 followed the 
Bernoulli distribution with values 0 and 1 denoting low and high weight, respectively. 
In this data set, only the gender of the animals was statistically significant (P<0.05) and 
was included in analyses as the only fixed effect.

6



2.3.2 Statistical analysis
2.3.2.1 Gaussian data trait
Four  animal  models  were  considered  for  BW. Model  M1 was  a  purely  direct 

additive  animal  model,  while  model  M2 allowed  for  the  inclusion  of  maternal 
environmental effects.  Models M3 and M4 were as model M2, but with zero and non-
zero ucσ , respectively.  In summary, the models in matrix notation were as follows:

eZuXby ++=   (M1)
ecZZuXby c +++=   (M2)

ecZZuXby c +++= , with 0),cov( =cu  (M3)
ecZZuXby c +++= , with Iuccu σ=),cov(  (M4),

where y = n×1 vector of observations (n = number of records = 2,319), b = p×1 vector 
of fixed effects (p = number of fixed effects classes = 42),  u = q×1 vector of direct 
additive genetic effects (q = number of additive effects = 2,456),  c = k×1 vector of 
maternal  environmental  effects (k = number of dams with offspring= 105),  e = n×1 
vector of residuals; X, Z and Ζc denote the incidence matrices relating the observations 
to the corresponding fixed and random effects; and A the additive relationship matrix. 
The vector  of  direct  genetic  effects  was  assumed to  follow the normal  distribution: 

( )A0u 2,~ unN σ ,  where  0n denotes a n×1 vector  of 0s and  2
uσ  denotes to the direct 

genetic variance. The maternal environmental effects were assumed to follow a normal 
distribution given by:  ( )kckN I0c 2,~ σ , where  kI  is an identity matrix of order k and 

2
cσ  the  maternal  environmental  variance.  Finally,  residuals  for  the  two  traits  were 

assumed normal as follows: ( )nenN I0e 2,~ σ , where 2
eσ  is the residual variance.

From a  Bayesian  perspective,  the data  y are assumed to  be a realization from 
),(~,,| 22

nee N IZuXbuby σσ +  and  ),(~,,,| 22
nee N IcZZuXbcuby c σσ ++  for 

models  M1 and M2,  respectively,  where the unobserved vector  (q×1) of the additive 
genetic  effects  is  assumed  to  follow  the  multivariate  normal  distribution: 

),0(~,| 22 AAu uu N σσ  and  the  vector  of  the  maternal  environmental  c (k×1)  the 
multivariate  normal  ),0(~| 22

kcc N Ic σσ .  The  vector  of  fixed  effects  b (p×1)  was 
partitioned into two sub-vectors, denoting hatch (h) and sex (s). It was assumed that 
both  sub-vectors  followed  univariate  normal  according  to: ),0(~| 22

hh N σσh  and 
),0(~| 22

ss N σσs . Two additional Bayesian animal models were explored that included 
a covariance between additive genetic and maternal environmental effects. The vector 
of the data y for both models was assumed to be: 

),(~,,,,| 22
nee Nr IcZZuXbcuby c σσ ++ , where the correlation was 

cu

cur
σσ

),cov(=  and 

r = 0 for models M4 and M3, respectively.

Gelman (2006) investigated the statistical properties of different priors on variance 
components and found that a uniform prior on the standard deviation is a reasonable 
choice in a number of situations. Therefore, a vague uniform prior was utilised for the 
standard deviation of the additive genetic effects )100,0(~ Uuσ . The priors for c2 and 
the  residual  variance  2

eσ  were  Inverse-gamma  (0.001,  0.001).  A  normal  prior was 
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assumed for the fixed effects bi ~ N(0, 104). Estimates of heritability ( 2h ) as well as 2c  
were  calculated  as  ratios  of  the  estimates  of  direct  additive  ( 2

uσ )  and  maternal 
environmental  ( 2

cσ )  variances  to  the  phenotypic  variance  ( 2
pσ ),  respectively.  The 

phenotypic variance accounts for the sum of all variance components, according to the 
model.

2.3.2.2 Simulation study
A simulation study was also conducted with population structure emulating the 

pedigree and the variance components of the real data. In total, 20 sires and 70 dams 
were used in the pedigree and 2240 progeny with records were simulated. Each sire was 
assumed to mate to 7 females, while every dam produced offspring with 2 different 
males. Each full-sib family comprised of 16 offspring. Direct genetic effect for founder 
i  (1,…,90) was drawn as  ),0(~ 2

ui N σu ,  while the maternal  environmental  effect  of 
dam j  (1,…,70)  was  ),0(~ 2

cj N σc ,  with  72 =uσ  and  32 =cσ .  Two scenarios  were 
explored regarding the correlation between the direct genetic and the c2 effects ( ucr ): a) 

ucr  = -0.2 (low) and b)  ucr  = -0.8 (high). The direct genetic effects of offspring i (1,

…,2240)  were  calculated  by:  ikji msuuu ++= )(
2
1

,  where  ju and  ku  denote  direct 

genetic  effects  of  dam and  sire,  respectively,  while  msi represented  the  Mendelian 
sampling  deviation  drawn  conditional  upon  the  c2 effects: 

)5.0)1(,
5.0

(~| 22
2

ui
c

u
ii rcrNcms σ

σ
σ

− .  The total  phenotypic  variance was estimated 

according to: 2222
ecup σσσσ ++= . The residuals were sampled as ),0(~ 2

ei Ne σ , where 
322 =eσ , thus resulting in 422 =pσ , 17.02 =h and 07.02 =c . 

Note  that  all  the  above  values  for  the  various  variance  components  were 
deliberately chosen to have: a) a marginal but statistically significant contribution of the 
c effects, and b) a negative ucr . Thus the model of analysis of the simulated data would 
be M4. A common mean was assumed to be the only fixed effect for the simulated trait. 
In  total,  30  samples  from each  scenario  were  generated.  These  samples  were  then 
analyzed via models M1-M2 (ASREML and AnimalINLA) and M2-M4 (WinBUGS). The 
mean squared error (MSE) was employed to quantify the performance of the predictors 
throughout along with the  coverage of interval estimates. The  MSE was  computed as 

follows: 
N

MSE

N

i
∑

=
+−

= 1

2 ))ˆvar()ˆ(( θθθ
 where θ stands for the true, θˆ  for the estimated 

parameter, θθ −ˆ  corresponds to bias and N = 30 is the number of samples. 

2.3.2.3 Binary data trait
Initially,  a  simple  animal  model  was  fitted  via  REML,  considering  y20 as  a 

normally  distributed  trait.  Subsequently,  an  animal  threshold  model  (Wright,  1934; 
Dempster and Lerner, 1950) was used for the analysis of the binary variable.  In this 
analysis,  the  observed binary variable  y20  is  related  to  an  underlying  unobservable 
continuous variable, called liability λ (Gianola, 1982; Gianola and Foulley, 1983), such 
that the observed binary responses (y20) are the result of the following relationship: 
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>
≤= τλ

τλ
i

i
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where  τ is  a  fixed  threshold,  and  iy20  corresponds  to  observation  i.  Several  link 
functions  (logit,  probit,  cloglog)  can  be  applied  to  link  the  binary  variable  to  the 
underlying scale (Gilmour et al., 2009). In our study, the logit link function was used: 

)
1

log(
µ

µλ
−

= ,  where  μ is  the  probability  of  success  and  λ the  vector  of  linear 

predictors of the liability on the underlying scale. Αn animal model was assumed for λ 
such as: eZuXb ++=λ . A uniform prior was assumed here for the standard deviation 
of the additive genetic effects on the underlying scale )100,0(~ Uuσ . In the threshold 
models,  the residuals  have fixed variance with values depending on the chosen link 

function: 12 =eσ  and 29.3
3

2
2 ≈= πσ e  for probit and logit, respectively (Gilmour et al., 

2009). On the logit scale, the heritability 2h  was estimated by: 
3

2
2

2
2

πσ

σ

+
=

u

uh
.

2.3.2.4 Model evaluation criteria
According to the method applied, model comparison was based on four evaluation 

criteria:  the  Akaike  Information  Criterion  (AIC;  Akaike,  1973),  the  Bayesian 
Information  Criterion  (BIC;  Schwarz,  1978),  the  conditional  Akaike  Information 
Criterion (cAIC; Vaida and Blanchard, 2005) and the Deviance Information Criterion 
(DIC;  Spiegelhalter  et al., 2002).  All criteria are based upon the computation of the 
deviance  (D):  D= Lyp log2))ˆ|(log(2 −=− θ ,  where  θ denotes  the  px1 vector  of the 
model parameters and )ˆ|( θyp  the likelihood of the data y evaluated at the maximum 
likelihood estimateθˆ . While LRTs suggest the direct comparison of LogLs between the 
various  nested  models,  AIC,  BIC  and  cAIC  suggest  penalizing  the  deviance  by 
appropriate  complexity  terms.  According  to  Akaike  (1973)  the  appropriate  term for 
penalizing  the  deviance  is  twice  the  number  of  the  model  parameters  p  i.e. 

pLAIC i 2log2 +−=   while Schwarz (1978) suggested the proper penalization term to 
be plog(n):  npLBIC i loglog2 +−= , where n is the number of observations. However, 
the determination of the number of the model parameters is non-trivial when random 
effects are of interest and are being estimated using methods such as BLUP. For such 
cases the AIC is shown (Crainiceanu and Ruppert, 2004) to be asymptotically biased. In 
addition, Greven and Kneib (2010) showed that in linear mixed models AIC is a biased 
estimator of the Akaike information due to the non-open parameter space and the lack 
of  independence  between  observations.  An asymptotically  unbiased criterion  is  the 
cAIC defined by Vaida and Blanchard (2005) as ρ2log2 +−= iLcAIC , where ρ are the 
effective degrees of freedom (Hodges and Sargent, 2001), given by the trace of the hat-
matrix  H.  A Bayesian analogue of  ρ, the the effective number of parameters,  pD, has 
been proposed earlier and is  used  in the  DIC (Spiegelhalter  et al., 2002): DIC = D + 
2pD. In all criteria, models with smallest values are to be preferred denoting better fit to 
the data.
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2.4 Results
2.4.1 Gaussian data trait
Table 2.1 summarizes the estimated variance components and genetic parameters 

of BW, along with likelihoods,  ρ and model evaluation criteria.  Heritability for BW 
ranged from 0.15 to 0.34, while c2 accounted for 0-0.08 of the total phenotypic variance, 
depending on the model and the method applied. All evaluation criteria, regardless of 
the method considered, concur in the choice of a purely additive animal model without 
the inclusion of the c2 effects. During M1, heritability estimates ranged slightly among 
the  methods  from  0.31  (ASREML)  to  0.34  (AnimalINLA),  while  confidence  and 
credibility intervals between ASREML and the Bayesian programs always coincided. 

Under model M2, REML-based estimates were significantly different than those 
obtained from the two Bayesian approaches. In this case, REML direct heritability was 
seriously underestimated (0.15) when contrasted to MCMC and INLA methods (0.31 
and  0.32,  respectively).  Furthermore,  while  c2 was  0.07  ( 03.0± )  in  REML,  no 
detectable variance due to c2 was estimated during the Bayesian methods. As a result, 
the  sum of  the  additive  and the  c2 effects  given  as  a  proportion  of  the  phenotypic 
variance  was  significantly  lower  during  REML (0.22)  when  compared  to  Bayesian 
methods (0.31-0.32). Such a paradox may arise from covariances between the various 
random effects. To test for such a hypothesis we fitted model M4 that accounted for a 
covariance between the additive genetic and the maternal environmental effects. This 
could be effectively modeled only via the WinBUGS software. Under model M4 (Table 
2.1), h2 and c2 estimates were comparable (0.17 and 0.08, respectively)  to ASREML 
estimates  (for  model  M2),  while  the  covariance  in  question  was  not  statistically 
significant (0.04±0.07). A negative additive genetic-maternal environmental covariance 
was detected (-0.20), although with large standard error (0.30) that did not allow for 
firm conclusions. When this covariance was forced to 0 (model M3) as in ASREML, 
estimates  (0.28 and 0.02 for h2 and c2,  respectively)  approached those obtained (for 
model M2) by WinBUGS and AnimalINLA.

To  further  quantify  implications  of  model/method  evaluation  on  selection 
decisions, Pearson as well as rank correlations of animals’ EBVs and the percentage of 
common animals selected were calculated for all models and methods applied (results 
not shown). With regard to the EBVs, Pearson (and rank) correlations were extremely 
high (0.97, 0.99) when the focus was on the EBVs of all animals and/or a proportion of 
the best 20%. During this phase, an additional advantage of the WinBUGS software is 
its ability to estimate (via the Rank tool) the uncertainty associated with the ranking of 
the individuals from the posterior distributions of the EBVs.  Figure 1 presents twelve 
selected examples from the posterior distribution of the EBV ranks, with four animals 
from the top, middle and low end of the spectrum, respectively. These ranks are based 
upon  the  whole posterior density  and  properly  account  for  characteristics  like  the 
variance and skewness of the posterior. Both, a 95% rank interval as well as the median 
rank are provided, thus presenting an easy and flexible way of animal selection. We 
illustrate, among other aspects, the large uncertainty associated with selecting among 
similar animals. In order to account for uncertainty in the (AS)REML context, ranking 

of animals was derived by using the z-scores: 
i

i
i se

u
z = , where iu  and ise  the EBV and 

standard error of  EBV of  the animal  i, respectively. Also here, rank correlations were 
remarkably high ranging from 0.96 to 0.99 among all methods and models considered. 
Furthermore,  standard  errors  of  the  EBVs  and  solutions  for  the  fixed  effects  were 
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comparable among the methods with no statistically significant differences. In general, 
all models and methods suggested the same animals (96-99% common amongst). 

 2.4.2 Simulation study
Descriptive statistics of the simulated data and the estimators across models and 

methods are in Table 2.2. Average values of the simulated data were equal to the true 
with h2 and c2 equal to 0.17 and 0.07, respectively. Note that during simulations c2 was 
statistically  significant.  Using  model  M1 under  either  ASREML  or  AnimalINLA 
resulted always in inflated predictions for the true parameters. While the true heritability 
was  0.17,  the  estimated  heritability  ranged  from 0.35  to  0.51  with  a  tendency  for 
inflated  estimates  particularly  in  AnimalINLA  and  under  the  strongly  negative  ucr  
scenario for both software packages (ASREML and AnimalINLA). Overestimation of 
the direct heritability was due to both higher estimates of the additive genetic variance 
and lower estimates of the residual variances. 

Estimates under model M2 were in close proximity to the true values only in the 
case of ASREML and the low ucr  scenario (h2=0.15, c2=0.07). Slightly higher estimates 
for h2 and c2 were observed in ASREML in the extreme  ucr  case (h2=0.21, c2=0.08). 
Under AnimalINLA, the respective h2 estimator was seriously inflated (h2=0.34) due to 
overestimation of the additive genetic effects and failure to account for the  c2 effects. 
This trend was more evident in the strong vs. the low ucr  scenario. WinBUGS estimates 
for Model M2  under the high  ucr  scenario were slightly better than those obtained by 
AnimalINLA. Finally, model M4 was fitted via WinBUGS (Table 2.2) for the extreme 
scenario ( ucr =-0.8).  Although a statistically significant ucr  was detected here (as high 
as -0.60), h2 and c2 were systematically overestimated.

The MSEs across models and methods are presented in Table 2.3. Irrespectively of 
the method and/or model, MSEs were significantly lower in low vs. the high correlation 
scenario.  Furthermore,  better  estimates  as  reflected  in  terms  of  lowest  MSEs  were 
attained in ASREML using M2 model under the low correlation. The MSE of model M2 

in ASREML was the lowest, whereas the MSE of model M1 in AnimalINLA was the 
highest. Interestingly, even under the strongly negative ucr  scenario, using model M2 in 
ASREML resulted in lower MSE, indicating that ignoring  ucr  during modelling can 
result in effective estimators for the variance components under this particular software. 
The WinBUGS software, although able to account for the specific correlation, exhibited 
the highest MSE of 2

eσ , with analogous effect on the estimators of h2 and c2. All other 
parameters  ( 2

uσ  and  2
cσ )  estimated  via  model  M4 in  WinBUGS had relatively  low 

MSE.

The coverage of interval estimates for the three models and the respective methods 
of analysis are shown in Table 2.4. To construct Bayesian 95% intervals, the quantiles 
of the relevant posterior distributions (as estimated by MCMC and INLA) were used. 
ASREML’s intervals were constructed based on asymptotic normality of the maximum 
likelihood using )ˆ(96.1ˆ θθ se∗± , where se denotes the estimated standard error of the 
parameter. In the case of low ucr  the best coverages were given by ASREML and model 
M2,  although  intervals  were  narrower  than  the  Bayesian  methods.  In  contrast, 
WinBUGS exhibited  the  best  coverage  performance  in  the  case  of  the  high  ucr ,  in 
expense of wider intervals.  AnimalINLA experienced difficulty in  attaining  nominal 
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coverage  of  interval  estimates  when  model  M1 was  assumed  as  well  as  under  the 
scenario of  the strongly negative ucr . Furthermore, AIC suggested model M2  analysed 
via ASREML in 60% of the samples under the low correlation scenario and in 33.33% 
under the high one. In contrast, DIC via AnimalINLA suggested under both scenarios 
less often (26.67% and 40.00% for  low and high scenario,  respectively)  model  M2, 
which included the c2 effects. Finally, DIC via WinBUGS favored the true model that 
incorporated the ucr in 76.67% of the samples.

2.4.3 Binary data trait
The estimated variance components  and genetic  parameters  of y20 for a purely 

additive animal model across the three methods are presented in Table 2.5. A model 
incorporating c2 effects was also fitted, however convergence was not achieved under 
any  method  applied.  In  (AS)REML,  heritability  on  the  observed  scale  ( 2

Oh )  was 
estimated as high as 0.10, while the respective estimate on the underlying scale was 
significantly  higher  ( 2

Uh =0.19).  Using  the  classical  formula  (Dempster  and  Lerner, 

1950), the ratio between the two estimates would be:  
( )[ ]
( )pp
xz

h
h p

U

o

−
=

1

2

2

2

, where p is the 

level of incidence and ( )pxz  is the ordinate of a standard normal curve cutting off an 

area equal to p. For p = 0.2 (as in here) the ratio is 5.02

2

≈
U

o

h
h

 in full agreement with our 

results. Estimates from AnimalINLA were comparable to those of ASREML ( 21.02 =Uh
). Interestingly, the WinBUGS heritability estimate was significantly higher (up to 0.36) 
approaching  the  original 2h .  Differences  were  also  detected  on  the 
confidence/credibility intervals of the point estimates of the additive variance as well as 
the heritability on the underlying scale. More specifically, the credibility interval for 2

Uh  
given by WinBUGS was in the region of (0.21, 0.56), while that of AnimalINLA was in 
(0.13, 0.30) and more profoundly the confidence interval given by ASREML was (0.09, 
0.29). 

Rank  correlations  were  also  estimated  here  for  the  three  methods  (results  not 
shown?).  Although  statistically  significant  differences  were  detected  between  the 
estimates,  obtained  by  WinBUGS  and  the  other  two  programs,  rank  correlations 
remained  high  ranging  from  0.92  to  0.99.  In  addition,  the  proportion  of  common 
animals selected among the three methods exceeded 93% suggesting minor implications 
of method usage on selection decisions.

2.5 Discussion 
The theoretical aspects and advantages of REML and MCMC methods for fitting 

hierarchical  multilevel  models,  such  as  the  animal  model,  have  been  extensively 
explored in literature (see Browne and Draper, 2006 for a thorough simulation study). 
However, this is the first study attempting to compare the efficiency and accuracy of 
three  methods  of  variance  components  estimation  and  breeding  values  within  the 
context of animal breeding. Our main concern was the practical aspects of applicability 
of three available typical software programs for the standard animal breeder.

From a  frequentist's  point  of  view,  the  standard method entails  the use of  the 
REML and BLUP methods. In the present study, the ASREML (Gilmour et al., 2009) 
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software  was  employed.  The  software  is  free  for  academic  purposes  (at  least  the 
Windows-based; W-ASREML), is stable, fast, can handle many different models, data 
structures and thousands of data records. In addition, the necessary files are not very 
complicated to construct while a valuable manual, containing a lot of information and 
numerous examples, is available for the animal breeder. For binary trait modelling, a 
variety of link functions (logit,  probit,  cloglog) can be chosen.  An obvious obstacle 
when  using  commercialized  programs  deals  with  their  limited  flexibility  i.e.  the 
inability to model complex structures between (random) effects. A good example here 
was  the  existence  of  a  negative  correlation  between  u and  c that  could  not  be 
appropriately  accommodated  within  the  context  of  a  typical  REML  package.  This 
covariance  is  usually  treated  as  non  existent  (assumed  of  0).  Modelling  of  the 
covariance in question was only possible in WinBUGS, which enables the exploration 
of  possible  correlation  structures  between  the  various  random effects,  a  potentially 
helpful  feature  in  testing  assumptions  of  the  standard  animal  model.  This  program 
allows for the application of a large group of competing models and Bayesian model 
evaluation criteria (Sorensen and Gianola, 2002). A further important attribute of the 
WinBUGS  program  is  the  rank  tool,  which  can  simultaneously  incorporate  the 
uncertainty  associated  with  the  ranking  of  the  individuals,  thus  assisting  animal 
selection. Bayesian methods, such as the MCMC implemented in the WinBUGS, can be 
especially useful in complex situations at the cost of being computationally expensive 
and time consuming. For our data, after burn-in of 10,000 iterations a total number of 
1,000,000 iterations  and a thinning interval  of  20 were applied.  Based on graphical 
inspection of the trace and autocorrelation plots it was concluded that convergence was 
achieved,  yielding  a  total  sample  of  50,000  iterations.  This  procedure  took 
approximately 14 to 16 hours, depending on the model. 

Present results based on the simulations have shown that: a) failure to account for 
statistically significant random effects apart from the direct genetic effects, results in 
inflated  direct  heritability  estimates.  This  is  the case because the additional  random 
effects are accounted as direct genetic effects. This is a rather common finding across 
studies  (e.g. Kushwaha  et al., 2009; Tosh  et al., 2010) and implies the need of using 
exhaustive models when analyzing data, b) even when an existent correlation between 
random effects  is  not taken into account  during modelling,  (AS)REML can provide 
effective  point  estimates  of  the  variance  components.  Furthermore,  WinBUGS 
flexibility and effectiveness in accounting for  ucr proved its usefulness for the Animal 
Breeder in unveiling such correlations of interest.

For the Bayesian  animal  breeder,  AnimalINLA has proved a  surprisingly time 
efficient  experience.  It  took  less  than  10  sec  to  produce  the  required  posterior 
distributions while providing comparable estimates with the other packages. Although 
computationally efficient, this R-package has revealed some disadvantages. Firstly, no 
more than 4,000 records could be incorporated into the animal model, probably due to 
compatibility  problems with Windows. Secondly,  as Holand  et  al. (2011) have also 
stated, AnimalINLA might give biased posteriors for the additive genetic variance in the 
case  of  a  binary  distributed  trait.  Finally,  it  is  not  as  flexible  in  modelling  as  the 
WinBUGS, for the inexperienced in programming animal breeder and the manual is 
currently rather short. 

In conclusion, WinBUGS can be of great assistance to the animal breeder, because 
of its flexibility to modelling complex models while unravelling existent data structures 
that the usual REML-based packages neglect. Within the animal breeding context, its 
applicability  remains  rather  limited  since  only  small  to  moderate  data  sets  or 
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populations  can be handled  efficiently  with respect  to  time.  AnimalINLA appears  a 
promising future perspective for the animal breeder dedicated to the Bayesian scholar 
since it is remarkably fast. It seems, however, to be a package still under development. 
Our own experience on large data sets have shown that ASREML can effectively handle 
analyses for up to 500,000 records and related pedigree structures, being stable, fast (<1 
h) and mostly independent of initial values. Furthermore, as the simulation results have 
shown, even when an extreme covariance between random effects is neglected, it can 
provide estimates of the parameters in question with relatively small  bias and error. 
Given all  the  above,  the  (AS)REML remains  the  gold  standard  for  the  heavy duty 
animal breeder.
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Tables and Figures

Table 2.1 Estimates of variance components, genetic parameters, log-likelihoods and model evaluation criteria for the typical normally distributed body weight (BW) of broiler chicken 
at 35 days of age using three different methods software (ASREML, WinBUGS and AnimalINLA).

2
uσ : additive genetic variance; 2

cσ : maternal environmental variance; ucσ : additive genetic-maternal environmental covariance; 2
eσ : residual variance; 2

pσ : phenotypic variance in 

g2;  2h : direct heritability;  2c : maternal environmental variance;  ucr : additive genetic-maternal environmental correlation; logL: natural log-likelihood;  AIC: Akaike Information 
Criterion; BIC: Bayesian Information Criterion; cAIC/DIC: conditional Akaike Information Criterion/Deviance Information Criterion;  ρ/pD: effective degrees of freedom/effective 
number of parameters;  CI: confidence/credibility intervals in curly brackets

Software Model 2
uσ 2

cσ ucσ 2
eσ 2

pσ 2h 2c
2
p

uc

σ
σ ucr logL AIC BIC cAIC/

DIC
ρ/
pD

ASREML M1 Mean 
{CI}

0.133 
{0.09, 0.18}

- - 0.302 
{0.27, 0.34}

0.434 
{0.40, 0.47}

0.31 
{0.21, 0.41}

- - - -1,653 3,307 3,313 4,044 369

M2 Mean 
{CI}

0.065 
{0.01, 0.13}

0.029 
{0.01, 0.05}

- 0.335
{0.30, 0.38}

0.429
{0.40, 0.46}

0.15 
{0.01, 0.29}

0.07 
{0.01, 0.13}

- - -1,651 3,306 3,317 4,182 440

WinBUGS M1 Mean 
{CI}

0.139 
{0.09, 0.20}

- - 0.298 
{0.26, 0.33}

0.437 
{0.40, 0.48}

0.32 
{0.22, 0.43}

- - - -1,622 - - 4,302 529

M2 Mean 
{CI}

0.134
{0.07, 0.20}

0.001 
{0,  0.03}

- 0.300 
{0.26, 0.34}

0.435 
{0.38, 0.47}

0.31 
{0.18, 0.43}

0 
{0, 0.06}

- - -1,632 - - 4,304 520

M3 Mean
{CI}

0.126 
{0.03, 0.20}

0.007 
{0,  0.05}

- 0.305
{0.26, 0.36}

0.438 
{0.41, 0.48}

0.28 
{0.07, 0.43}

0.02
{0, 0.11}

- - -1,680 - - 4,310 476

M4 Mean
{CI}

0.069
{0.01, 0.15}

0.032
{0, 0.12}

-0.014
{-0.08, 0.01}

0.321
{0.20, 0.37}

0.410
{0.31, 0.47}

0.17
{0.04, 0.35}

0.08
{0, 0.36}

0.04
{0, 0.19}

-0.20
{-0.88, 0.44}

-1,795 - - 4,305 358

AnimalINLA M1 Mean 
{CI}

0.152 
{0.11, 0.21}

- - 0.297 
{0.26, 0.33}

0.449 
{0.37, 0.54}

0.34 
{0.23, 0.45}

- - - - - - 4,289 -

M2 Mean 
{CI}

0.143 
{0.10, 0.21}

0.004 
{0,  0.03}

- 0.302 
{0.26, 0.34}

0.449 
{0.37, 0.57}

0.32
{0.23, 0.44}

0 
{0, 0.02}

- - - - - 4,290 -
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Table 2.2 Mean, standard deviation and range [minimum, maximum] of the true values and of the estimators of the simulated trait across models (M1, M2 and M4) and methods 
of analyses (ASREML, WinBUGS and AnimalINLA) under two scenarios (low and high) for the direct genetic-maternal environmental correlation.
Model M1 M2 M4

Software Simulated 
data

ASREML AnimalINLA ASREML AnimalINLA WinBUGS

Scenario low high low high low high low high high
2
uσ 7 (0.6)

[6, 8]
15 (3)

[11, 23]
19 (4)

[13, 30]
18 (17)
[13, 55]

32 (17)
[13, 65]

6 (2)
[4, 11]

10 (4)
[4, 21]

14 (10)
[11, 47]

26 (14)
[14, 50]

19 (5)
[7, 30]

10 (5)
[5, 21]

2
cσ 3 (0.5)

[2, 4]
- - - - 3 (1)

[2, 6]
3 (1)
[1, 7]

0 0 0.9 (0.8)
[0, 3]

6 (3)
[2, 13]

2
eσ 32 (0.9)

[30,34]
28 (2)

[24, 30]
24 (2)

[19, 29]
28 (2)

[26, 31]
25 (2)

[19, 29]
32 (2)

[28, 35]
29 (2)

[23, 34]
29 (2)

[26, 31]
25 (2)

[19, 29] 
24 (3)

[13, 30]
28 (6)

[16, 35]
2
pσ 42 (1.4)

[39,46]
43 (2)

[40, 48]
43 (2)

[39, 48]
47 (17)
[42, 84]

57 (17)
[40, 94]

42 (2)
[39, 46]

42 (2)
[39, 46]

44 (10)
[39, 78]

51 (13)
[40, 78]

44 (3)
[39, 51]

40 (6)
[23, 45]

2h 0.17 (0.02)
[0.14,0.19]

0.35 (0.05)
[0.27,0.47]

0.44 (0.07)
[0.31,0.61]

0.44 (0.13)
[0.30,0.65]

0.51 (0.14)
[0.33,0.69]

0.15 (0.05)
[0.08,0.26]

0.21 (0.09)
[0.09,0.47]

0.34 (0.09)
[0.26,0.60]

0.47 (0.13)
[0.21,0.64]

0.43(0.11)
[0.17,0.68]

0.24 (0.13) 
[0.13,0.54]

2c 0.07 (0.01)
[0.05,0.09]

- - - - 0.07 (0.02)
[0.04,0.13]

0.08 (0.03)
[0.02,0.16]

0 0 0.02(0.02)
[0, 0.09]

0.16 (0.09) 
[0.05,0.37]

ucσ -3.16 (0.47) 
[-4.29, -2.71]

- - - - - - - - - -4.54 (4.62)
[-9.74, -1.61]

2/ puc σσ -0.08 (0.01) 
[-0.10, -0.06]

- - - - - - - - - -0.13 (0.09)
[-0.28, -0.04]

ucr -0.2/-0.8 - - - - - - - - - -0.59 (0.2)
[-0.94,-0.2]

2
uσ : additive genetic variance; 2

cσ : maternal environmental variance; 2
eσ : residual variance; 2

pσ : phenotypic variance; 2h : direct heritability; 2c : maternal environmental 

variance; ucσ = direct genetic-maternal environmental covariance; ucr : direct genetic-maternal environmental correlation; N = 30 samples per scenario 
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Table 2.3 Mean Squared Errors of the variance components and the genetic parameters across models (M1, M2 and M4) and methods of analyses 
(ASREML, WinBUGS and AnimalINLA) under two scenarios (low and high) of direct genetic-maternal environmental correlation.
Model M1 M2 M4

Software ASREML AnimalINLA ASREML AnimalINLA WinBUGS
Scenario low high low high low high low high high

2
uσ 85.00 184.43 171.80 343.28 12.83 40.47 85.68 323.46 168.36 41.76
2
cσ - - - - 2.60 4.67 9.00 9.00 6.05 20.88
2
eσ 22.43 65.70 17.23 65.53 5.67 19.70 15.33 65.33 72.79 215.21
2
pσ 6.99 12.36 177.28 199.08 5.78 7.30 45.24 182.53 11.73 128.33

2h 0.04 0.08 0.09 0.18 0.01 0.02 0.04 0.14 0.44 0.81
2c - - - - 0.01 0.01 0.01 0.01 0.03 0.85

ucr - - - - - - - - - 2.49
2
uσ : additive genetic variance; 2

cσ : maternal environmental variance; 2
eσ : residual variance; 2

pσ : phenotypic variance; 2h : direct heritability; 2c : 

maternal environmental variance; ucr : direct genetic-maternal environmental correlation; N = 30 samples per scenario
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Table 2.4 Actual coverages of nominal 95% intervals of estimated variance components and genetic  parameters as well  as 
models  percentage favoured by AIC (REML) and DIC (INLA)  across models  (M1,  M2 and M4)  and methods  of  analyses 
(ASREML,  WinBUGS  and  AnimalINLA)  under  two  scenarios  (low  and  high)  of  direct  genetic-maternal  environmental 
correlation.

low high
ASREML AnimalINLA ASREML AnimalINLA WinBUGS

M1 M2 M1 M2 M1 M2 M1 M2 M2 M4
2
uσ 36.67 83.33 33.33 76.67 16.67 50.00 20.00 40.00 40.00 76.67
2
cσ - 86.67 - - - 56.67 - - 63.33 93.33
2
eσ 73.33 93.33 53.33 80.00 26.67 76.67 46.67 67.67 46.67 66.67
2
pσ 80.00 96.67 73.33 90.00 70.00 86.67 66.67 80.00 86.67 86.67

2h 33.33 76.67 33.33 73.33 13.33 53.33 20.00 33.33 36.67 63.33
2c - 90.00 - - - 56.67 - - 60.00 93.33

ucr - - - - - - - - - 90.00

AIC/DIC 40.00 60.00 73.33 26.67 66.67 33.33 60.00 40.00 23.33 76.67
2
uσ :  additive genetic variance;  2

cσ :  maternal environmental variance;  2
eσ :  residual variance;  2

pσ :  phenotypic variance;  2h : 

direct heritability;  2c :  maternal environmental variance;  ucr :  direct genetic-maternal environmental correlation;  N =  30 
samples per scenario
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Table  2.5 Estimates  of  variance components  and genetic  parameters  for  the  binary 
transformed body weight (BW) of broiler chicken at 35 days of age using a logit animal 
threshold model  under three different  methods software (ASREML, WinBUGS and 
AnimalINLA).
Software 2

uσ 2
pσ / *2

pσ 2h

ASREML (obs) Mean (SE)
CI (95%)

0.011 (0.003) 0.109 (0.003) 0.10 (0.02)
{0.006, 0.018} {0.10, 0.12} {0.04, 0.16}

ASREML Mean (SE)
CI (95%)

0.769 (0.226) 4.059 (0.226) 0.19 (0.05)
{0.34, 1.21} {3.63, 4.49} {0.09, 0.29}

WinBUGS Mean (SE)
CI (95%)

1.972 (0.859) 5.275 (0.795) 0.36 (0.09)
{0.87, 4.12} {4.14, 7.27} {0.21, 0.56}

AnimalINLA Mean (SE)
CI (95%)

0.866 (0.241) 4.156 (0.353) 0.21 (0.07)
{0.48, 1.41} {3.77, 4.70} {0.13, 0.30}

2
uσ :  additive genetic variance; 2

pσ :  phenotypic  variance;  29.3* 22 += up σσ  the 
phenotypic equivalent variance on the underlying scale;  2h :  direct  heritability; 
obs: observed scale; CI: confidence/credibility intervals in curly brackets
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Figure 2.1 Distribution of ranking for twelve representative animals, based on the EBVs
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3.  Model comparison and estimation of genetic parameters for 
body weight in commercial broilers

3.1 Summary
The availability  of powerful  computing and advances  in algorithmic  efficiency 

allow  for  the  consideration  of  increasingly  complex  models.  Consequently,  the 
development and application of appropriate statistical procedures for model evaluation 
is becoming increasingly important. This paper is concerned with the application of an 
alternative  model  determination  criterion  (conditional  Akaike  Information  Criterion, 
cAIC) in a large dataset comprising 203,323 body weights of broilers, pertaining to 7 
(BW7) and 35 (BW35) days of age. Seven univariate and seven bivariate models were 
applied. Direct genetic, maternal genetic and c2 effects were estimated via REML. The 
model  evaluation  criteria  included conditional  Akaike  Information  Criterion  (cAIC), 
Bayesian Information Criterion (BIC) and the standard Akaike Information Criterion 
(henceforth marginal; mAIC). According to cAIC the best-fitting model included direct 
genetic, maternal genetic and c2 effects. Maternal heritabilities were low (0.10 and 0.03) 
compared to the direct heritabilities (0.17 and 0.21), while c2 was 0.05 and 0.04 for BW7 

and BW35, respectively. BIC and mAIC favoured a model that additionally included a 
direct-maternal genetic covariance, resulting in highly negative direct-maternal genetic 
correlations  (-0.47  and  -0.64  for  BW7 and  BW35,  respectively)  and  higher  direct 
heritabilities (0.25 and 0.28 for BW7 and BW35, respectively). Results suggest that cAIC 
can select different animal models than mAIC and BIC, having potential  implications 
on selection decisions.

3.2 Introduction
Juvenile body weight has traditionally been considered as a trait of fundamental 

importance for broiler breeding programs. Heritability estimates for the additive genetic 
effects from age 0 to 36 weeks vary from 0.10 to 0.64 (see Table  3.1 for a review). 
Apart from these genetic effects, studies have also been carried out in an attempt to 
quantify the importance of maternal genetic effects in poultry. In those studies maternal 
heritability varied from 0.02 to 0.24, depending on model and population (Table 3.1). 
Studies that consider a non-zero covariance between direct additive and maternal genet-
ic effects suggest a range between –0.11 and –0.92 for this correlation (Table 3.1). Ad-
ditional studies are required, preferably using large data sets, in order to elucidate the 
magnitude of direct-maternal genetic correlation in poultry. 

The estimation of appropriate genetic parameters depends on the formulation of a 
suitable statistical model. For a  given class of candidate models the goal of statistical 
analysis is to estimate the model parameters and select the most appropriate model out 
of these candidates. A variety of information criteria have been proposed for this pur-
pose. In the context of animal breeding, information criteria such as the Akaike’s In-
formation Criterion (AIC) (Akaike 1973) and the Bayesian Information Criterion (BIC) 
(Schwarz 1978) have been widely used. Both criteria are based on the log-likelihood 
and the number of estimated parameters p; the latter are used to penalize for the com-
plexity of the models. When the estimation of random effects (such as the breeding val-
ues) is of interest, the number of model parameters is unclear. Recent studies in the stat-
istical literature (Hodges and Sargent 2001; Vaida and Blanchard 2005; Liang and Wu 
2008; Greven and Kneib 2010) suggest that in the case of linear mixed models condi-
tional Akaike Information Criterion (cAIC), as opposed to the standard AIC, termed 

23



marginal Akaike Information Criterion (mAIC), is unbiased when the (co)variance mat-
rix of the random effects is known. 

The objectives  of the present study were a)  the application and comparison of 
mAIC, BIC and cAIC for the evaluation of different animal models, b) the estimation of 
(co)variance components and genetic parameters for body weight at two different ages 
in a large data set of a commercial line of broiler chicken and c) the investigation of po-
tential implications of model usage on selection decisions.

3.3 Materials and methods
3.3.1 Data selection and definition of fixed effects
Data on body weight at 7 (BW7) and 35 (BW35) days of age from a broiler line 

were made available by Aviagen Ltd. Fixed effects considered in the analysis included 
the  gender  and  the  week  of  hatch  of  animals.  Progeny  originated  from  groups  of 
contemporary parents, referred to as mating groups, which were fitted as fixed effects in 
the analysis to account for the differences in the genetic level of parents. Finally, the age 
of  sires  and dams  was  considered  as  fixed  effect  by  building  four  classes  (9  -  12 
months), ensuring that each one has sufficiently large number of records. 

There  is  evidence  that  even  a  fully  specified  animal  model  may  suffer  from 
confounding between genetic and environmental effects (Kruuk and Hadfield 2007). A 
preliminary  analysis  using  the  SAS  (2009)  software  revealed  such  a  confounding 
between dams and sex of the offspring, as indicated by a loss of degrees of freedom. 
This was due to small families in which full-sibs all belonged to a particular sex class. 
All these records were eliminated from the analysis. In addition, three editing criteria 
were applied: 1) every dam had to have at least 4 offspring with records, following the 
suggestion from Lynch and Walsh (1998) to achieve equal precision in the estimates of 
paternal half-sibs and full-sibs variance 2) every sire should have mated with at least 3 
dams and 3) animals were required to have records for both traits.

The  final  dataset  consisted  of  203,323  records  comprising  99,330  males  and 
103,993 females, in 275 hatch weeks from 2000 to 2005. The pedigree included a total 
of 205,415 animals including 980 sires and 7,870 dams with progeny. A preliminary 
analysis of variance showed that the statistically significant fixed effects (P<0.05) for 
both traits included hatch, sex, mating group (93 classes) and the age of the parents. 
Hence, these fixed effects were included in all models. Interactions of sire by (all) fixed 
effects were not statistically significant and were not included in the analyses.

3.3.2 Statistical analysis
3.3.2.1 Univariate analysis
Differences in male and female mean performance as well as phenotypic variances 

were substantial. Initially,  a simple additive animal model was applied for both traits 
and each sex separately, but no statistically significant differences in heritabilities were 
detected. Furthermore, the genetic correlation between male and female body weight 
approximated unity, indicating that the two traits are not sex-linked. Therefore, in the 
following analysis,  body weights  from males  and females  were treated  as  one trait, 
having sex as fixed effect in the model. 

Seven animal models were considered for body weight at 7 and 35 days. Model 
M1 was a purely direct additive model, while model M2 allowed for the inclusion of 
maternal environmental effects. Model M3 included the direct genetic and the full-sib 
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family effects, in order to account for possible dominance effects. A maternal genetic 
effect was incorporated in model M4 in addition to the direct additive genetic effects, 
assuming zero direct-maternal genetic covariance ( umσ ). Model M5 was as model M4, 
but  with  non-zero umσ .  Models  M6 and  M7 corresponded  to  models  M4 and  M5, 
respectively, but also included maternal environmental effects. In summary, the models 
in matrix notation were as follows:

eZuXby ++=   (M1)
ecZZuXby c +++=   (M2)
efsZZuXby fs +++=   (M3)

emZZuXby m +++= , with cov(u,m)=0  (M4)
emZZuXby m +++= , with Amu umσ=),cov(  (M5)

ecZmZZuXby cm ++++= , with cov(u,m)=0  (M6)
ecZmZZuXby cm ++++= , with Amu umσ=),cov(   (M7),

where  y = n×1 vector of observations (n = number of records = 203,323),  b = p×1 
vector of fixed effects (p = number of fixed effects classes = 374),  u = q×1 vector of 
direct  additive genetic  effects  (q = number of additive effects  = 205,415),  m = d×1 
vector of maternal genetic effects (d = total number of females = 105,847),  c = k×1 
vector of maternal environmental effects (k = number of dams with offspring= 7,870), 
fs = s×1 vector of full-sib families (s = number of full-sib families = 8,609),  e = n×1 
vector of residuals;  X,  Z,  Ζm,  Ζc  and  fsZ  denote the incidence matrices relating the 
observations  to  the  corresponding  fixed  and  random  effects;  and  A the  additive 
relationship matrix.  The vector of direct and maternal genetic effects was assumed to 
follow the multivariate normal distribution:

( )AG0m
u ⊗





+ ,~ dqN ,

where 0N denotes a N×1 vector of 0s, ⊗  denotes the Kronecker product, 







= 2
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is the 2×2 (co)variance matrix between direct and maternal genetic effects, 2
uσ  denotes 

to the direct genetic variance,  2
mσ  the maternal genetic variance and  umσ  the direct-

maternal  genetic  covariance.  The  maternal  environmental  effects  were  assumed  to 
follow a normal distribution given by: ( )kck IN 2,~ σ0c , where kI  is an identity matrix 
of order k and 2

cσ  the maternal environmental variance. The full-sib family effect was 
also assumed to follow the normal distribution:  ( )sfssN I0fs 2,~ σ , where  2

fsσ  denotes 
the full-sib family variance. Finally, residuals for the two traits were assumed normal as 
follows: ( )nI0e 2,~ enN σ , where 2

eσ  is the residual variance.

3.3.2.2 Bivariate analysis
In addition to the univariate analyses, seven bivariate models were applied. The 

most  complex  of  the  bivariate  models  used  (model  M7,  for  both  traits)  can  be 
represented as follows:
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where  subscript  7  (35)  pertains  to  BW7 (BW35).  The  vector  of  direct  and  maternal 
genetic effects was assumed to follow the multivariate normal distribution:
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,~ 4nN ,

where  0N denotes  a  N×1 vector  of  0s,  ⊗  denotes  the  Kronecker  product,  A is  the 
numerator relationship matrix, and
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is the 4×4 (co)variance matrix between direct and maternal genetic effects. Maternal 
environmental effects for the two traits were assumed to be correlated within animals 
and independent between, following a multivariate normal distribution as follows:

( )k
35

7 IC0c
c ⊗



 ,~ 2kN ,

where kI  is an identity matrix of order k and 







= 2

35357

357
2
7

ccc

ccc

σσ
σσC

is  the  2×2  (co)variance  matrix  between  maternal  environmental  effects.  Finally, 
residuals  for  the  two  traits  were  assumed  to  be  correlated  within  animals  and 
independent between as:
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where nI  is an identity matrix of order n and
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is the 2×2 residual (co)variance matrix. 
All  analyses  (including univariate)  were carried out by the ASREML software 

(Gilmour et al 2009). Estimates of direct ( 2h ) and maternal ( 2
mh ) heritability as well as 

maternal environmental effects ( 2c ) were calculated as the ratios of estimates of direct 
additive  ( 2

uσ ),  maternal  genetic  ( 2
mσ )  and  maternal  environmental  ( 2

cσ )  variances 
respectively,  to phenotypic variance ( 2

pσ ). The phenotypic  variance accounts for the 
sum of all variance components, according to the model. The direct-maternal genetic 
correlation (rum) was computed as the ratio of the estimate of direct-maternal genetic 
covariance ( umσ ) to the product of the square roots of estimates of  2

uσ  and  2
mσ . In 

addition,  Willham (1972) was followed in calculating the total  heritability ( 2
TH ) for 

BW7 and BW35 by:

2

22
2 5.15.0
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ummu
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σ
σσσ ++

= .
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3.3.2.3 Model evaluation criteria
Broadly  speaking  there  are  two  classes  of  model  evaluation  and  comparison 

procedures. When a true model exists and lies within the range of models entertained in 
the analysis, the BIC (Schwarz 1978) is consistent, in the sense that the true model will 
be selected by the BIC as more data accrue. The AIC gives an unbiased estimator of the 
Kullback-Leibler divergence of the current model from the true model. In addition, it 
can be shown that AIC dispenses with the need for a true model and chooses the model 
with the best short-term predictive ability (Stone 1977). 

All model selection criteria require the computation of the deviance (D):

D = Lyp log2))ˆ|(log(2 −=− θ ,
where θ denotes the px1 vector of the model parameters and )ˆ|( θyp  the likelihood of 
the data y evaluated at the maximum likelihood estimate θˆ . Akaike (1973) shows that 
the  correct  term  for  penalizing  the  deviance  is  twice  the  number  of  the  model 
parameters p. Thus, he defined pLAIC i 2log2 +−=  as the model selection criterion. A 
Bayesian  argument  was  utilized  by  Schwarz (1978)  to  prove  that  the  appropriate 
penalization term is  plog (n) thus defining:  npLBIC i loglog2 +−= ,  where n is  the 
number of data observations.

The determination  of  the number  of  the  model  parameters  is  non-trivial  when 
random effects are estimated using methods such as BLUP. For such cases the mAIC is 
shown in  Crainiceanu  and Ruppert  (2004) to  be  asymptotically  biased. In  addition, 
Greven  and  Kneib  (2010)  showed  that in  linear  mixed  models mAIC  is  a  biased 
estimator of the Akaike information due to the non-open parameter space and the lack 
of independence between observations.  The conditional AIC (cAIC) defined by Vaida 
and Blanchard  (2005)  as  ρ2log2 +−= iLcAIC  is  asymptotically  unbiased.  A small 
correction term for estimating  2

uσ  is required, but  Liang and Wu (2008) showed that 
cAIC represents an accurate approximation and  ignoring the uncertainty arising from 
estimating  the  variance  of  the  random effects has  a  small  effect  on  its  calculation. 
Notice that ρ, the effective degrees of freedom (Hodges and Sargent 2001), is given by 
the trace of the hat-matrix H, which is a linear map of observed to fitted values. In order 
to  estimate  ρ,  the  fourth  field  of  ASREML’s  .yht  file  was  utilized.  This  output 
corresponds to the diagonal elements of the so-called ‘extended hat’ matrix (Gilmour et 
al. 2009) and for the simple case where the residual variance is 2

eσ I, the sum of these 
elements divided by the residual variance produce ρ. In the case of model M1, it can be 
expressed as: 
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where  λ= 2
eσ / 2

uσ .  See  the  Appendix  for  a  detailed  description,  including  the  case 
2)1(1 hN −+=ρ ,  when  A=I.  Minimizing  the  above  criteria  over  a  set  of  possible 

models can be seen as minimizing the average distance of an approximating model to 
the underlying truth (Greven and Kneib 2010). Thus, the model with the smallest cAIC 
value is to be preferred. 
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3.4 Results
3.4.1 Univariate analyses
Using the editing criteria,  401 outliers  of BW7 and 746 outliers  of BW35 were 

traced and removed from the analysis.  However, the estimated variance components 
were  not  affected  indicating  that  the  outliers  had  only  a  minimal  contribution  and 
impact on the dataset used. Table 3.2 summarizes the estimated variance components 
and genetic parameters of BW7, along with likelihoods,  ρ and model selection criteria 
for the seven univariate models. Direct heritability for BW7 ranged from 0.17 to 0.49, 
while  maternal  heritability  was  between  0.10  and  0.25.  Furthermore,  maternal 
environmental  variance  accounted  for  0.05-0.12  of  the  total  phenotypic  variance, 
depending on the model considered. A negative direct-maternal genetic correlation was 
detected ranging from -0.39 (model  M5)  to -0.47 (model  M7).  With regard to  BW35 

(Table  3.3),  direct  heritability  varied  from 0.21  to  0.43,  while  maternal  heritability 
ranged from 0.03 to 0.11. Here, maternal environmental variance accounted for 0.04-
0.05  of  the  total  phenotypic  variance,  depending  on  the  model.  A  negative  direct-
maternal genetic correlation was also estimated ranging from -0.35 (model M5) to -0.64 
(model M7) for the trait. In both traits, the estimated variance of the full-sib families 
(model M3) was equal to the maternal environmental variance (model M2) indicating no 
significant importance of dominance effects.

The inclusion of maternal environmental effects (c2) improved the fit significantly 
for both traits. The presence of maternal genetic ( 2

mh )  in addition to direct heritability 
(model M4) improved the fit further compared to the purely additive animal model (M1). 
Allowing for a non-zero direct-maternal genetic covariance (model M7) also increased 
the log-likelihood, resulting in the smallest values for mAIC and BIC. However, this 
increase in log-likelihood was not significant when penalized using ρ via the cAIC. The 
model with the smallest  ρ for both traits included direct genetic, maternal genetic and 
maternal  environmental  effects,  with  zero direct-maternal  genetic  covariance  (model 
M6).  This  reduction  dominated  the  likelihood  differences  between  the  models  and 
provided the best fit to the data based upon the cAIC. 

According to cAIC, the best model included additive genetic, maternal genetic and 
maternal environmental effects while assuming no additive-maternal genetic covariance 
(model M6). In this case, additive heritability was 0.17 and 0.21 for BW7 (Table 3.2) and 
BW35 (Table 3.3), respectively.  Maternal heritability was significantly higher in BW7 

(0.10) compared to BW35 (0.03), while maternal environmental variance accounted for 
0.05 and 0.04 of the total phenotypic variance of the BW7 and BW35, respectively. In 
contrast,  mAIC and BIC favored a  model  that  incorporated  direct  genetic,  maternal 
genetic  and  maternal  environmental  effects  with  a  non-zero  direct-maternal  genetic 
covariance (model M7). In this model, direct heritability was estimated to be 0.25 for 
BW7 (Table  3.2)  and  0.28  for  BW35 (Table  3.3).  Maternal  heritability  was  found 
significantly  higher  in  BW7 (0.15)  compared  to  BW35 (0.05),  while  maternal 
environmental variance accounted for 0.06 and 0.05 of the total phenotypic variance of 
BW7 and  BW35,  respectively.  Furthermore,  a negative  additive-maternal  genetic 
correlation was detected for BW7 (-0.47), but was significantly higher for BW35 (-0.64). 

Table 3.4 shows the rank (Spearman) correlations of animals based on the EBVs 
and the percentage of the best 1% males and 10% females that were common across the 
two best fitting models (M6 and M7). Although, high rank correlations were estimated 
among all animals for both traits (0.97 and 0.99 for BW7 and BW35, respectively), this 
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was  not  the  case  among  the  best  males  and  females.  With  regards  to  BW7,  rank 
correlations  were  0.72  and  0.79  among  the  best  1%  males  and  10%  females, 
respectively. However, rank correlations of the best animals were considerably higher 
for BW35 for both sexes (0.89 and 0.94 for the best males and females, respectively) . 

Slight effects of the model used were also reflected in the percentages of animals that 
were found to be the same across models. For BW7, this percentage was 84% for the 
best males and 88% for the best females. For BW35, the respective percentages were 
considerably  higher  reaching  92%  and  94%  for  the  best  males  and  females, 
respectively. 

3.4.2 Bivariate analysis
Bivariate analyses were conducted for all seven model combinations in order to 

estimate the genetic and the phenotypic correlation between the two traits. The three 
selection criteria proposed the same models used during the univariate analyses, while 
point estimates of all the parameters were not significantly different than those obtained 
from univariate analyses, for both traits. For all the above reasons, detailed results of the 
bivariate  analyses  are  not  presented,  but  the  genetic,  environmental  and  phenotypic 
correlations are given in Table 3.5. Under the application of a simple animal model the 
additive genetic and phenotypic correlations were estimated as high as 0.59 and 0.46, 
respectively. While the latter estimate ranged slightly between models (0.42-0.46), the 
additive genetic correlation varied considerably with values ranging from 0.11 to 0.59. 
The  lowest  estimates  (0.11-0.18)  for  the  genetic  correlation  were  attained  when 
maternal  effects, either genetic  or environmental,  were included in the analysis.  The 
correlations between the maternal genetic effects ranged slightly from 0.86 to 0.94 and 
this was also the case for the maternal environmental correlation (0.91 to 0.94). 

3.5 Discussion
The present  study demonstrates  the  application  of  a  recently  developed model 

selection criterion within the context of animal model(s). Results suggest that cAIC can 
select different models than the widely used mAIC and BIC. For random effects models 
the choice of the number of parameters incorporated in the penalty term (2p) is not 
always clear. When the number of variance components is included (mAIC), there have 
to be small differences in the log-likelihoods to result in the selection of simpler models. 
On the other extreme, if the number of parameters is considered to be equal to the total 
number of random effects, AIC tends to favor, on most occasions, the simplest model. 
Theoretical results suggest that cAIC is a more accurate model selection criterion when 
the random effects are included in the “focus” of the analysis  (Vaida and Blanchard 
2005; Liang and Wu 2008; Greven and Kneib 2010). 

The cAIC is based upon the estimated effective degrees of freedom (Hodges and 
Sargent 2001) that can be approximated by the trace of the hat matrix. Because of the 
assumption  that  the  estimated  variances  are  in  fact  known,  the  true  ρ might  differ 
somewhat. An alternative to estimating  ρ and cAIC would be the implementation of 
Bayesian methods for estimating the analogous effective number of parameters pD. In 
order to compare ρ via REML, with the effective number of parameters (pD) via MCMC 
methods a subset of approximately 60,000 records was used, spanning years 2002-2004. 
The results of this comparison (for both traits) for two univariate models (M1 and M2) 
showed that ρ and pD did not differ significantly. A more detailed investigation of ρ is 
presented in the appendix.
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A reduction of ρ was observed in model M2 over model M1 for BW7 and this was 
more pronounced for BW35. This could partly be attributed to the fact that ρ takes into 
account  the  information  that  is  common  to  random  effects  through  the  additive 
relationship  matrix  A (see  Appendix).  However,  this  does  not  explain  why smaller 
values were observed when maternal environmental effects were included for BW7 or 
why there was such a big difference in models for BW35. The ρ corresponds to the trace 
of the hat matrix, thus being dependent to the estimated variances and specifically λ= 2

eσ
/ 2

uσ . For  BW35 the estimated  2
eσ  was much larger than  2

uσ , when compared to  BW7. 
Therefore, λ was much greater and this affected ρ for BW35. Perhaps more importantly, 
the observed reduction  in  the  effective  degrees  of  freedom can be attributed  to  the 
negative  correlation  between  direct  and  maternal  genetic  effects.  Furthermore,  this 
reduction of  ρ in more complex models over the simple additive model  might be an 
indication  of  the  existence  of  a  covariance  between  the  random effects  that  is  not 
adequately accounted for, such as a dam-offspring environmental covariance (Koerhuis 
and Thompson 1997). 

All the criteria used for model comparison outlined the importance of the maternal 
genetic  and maternal  environmental  effects  while  the  inclusion  of  additive-maternal 
genetic covariance remained disputable. In contrast to the other two criteria (mAIC and 
BIC), cAIC did not suggest the inclusion of the latter covariance, which accounted for a 
reasonably significant part (0.08 – 0.09) of the total variance of the traits. Under the 
model  favored by the cAIC criterion,  the additive heritability estimate for BW7 was 
smaller than the respective estimate for BW35 (0.17 vs. 0.21). Total heritability estimates 
for  both  traits  were  equal  (0.22),  indicating  an  equal  efficiency  of  mass  selection. 
Furthermore, estimates of maternal heritability were significantly higher for BW7 than 
BW35 (0.10 vs. 0.03). This result may be reasonably expected as BW7 is closer in terms 
of time to the egg weight. Yolk, albumen and egg weight have a large influence on 
chick weight, whereas the chick’s own genes explain only a small part of its weight at 
hatching (Hartmann et al. 2003;  Wolansky et al. 2004). Other  studies (see Table 3.1) 
report additive and maternal heritability ranging from 0.10 to 0.61 and from 0.02 to 
0.24,  respectively.  However,  a  wide  range  of  weights,  measured  at  later  ages  and 
models  were  considered  in  these  studies  making  the  reported  estimates  not  directly 
comparable  to  ours.  For  body  weight  at  42  days  of  age,  estimates  of  maternal 
heritability and c2 effects did not differ from those reported by Koerhuis and Thompson 
(1997)  but  additive  heritability  was  higher  in  the  two  populations  studied  on  that 
occasion (0.23 and 0.27). 

According to the other two criteria (BIC and mAIC) the additive heritability for 
both  traits  was  of  comparable  magnitude  (0.25  and  0.28  for  BW7 and  BW35, 
respectively),  the maternal heritability was much higher in BW7 (0.15) than in BW35 

(0.05), while maternal environmental effects accounted for 0.06 and 0.05 of the total 
phenotypic  variance  of  BW7 and  BW35,  respectively.  The  additive-maternal  genetic 
correlation was estimated significantly higher in BW35 than in BW7 (-0.64 vs. -0.47) 
indicating a more profound antagonism between the two effects at the 35 days of age. 
Here, estimates of BW35 did not differ from those reported by Koerhuis and Thompson 
(1997) for body weight at 42 days of age, with the exception of the additive-maternal 
genetic  correlation  which  was  found to  be  lower  in  magnitude  (-0.54  vs.  -0.64).  It 
therefore seems that the use of the two standard criteria (mAIC and BIC) results  in 
appreciably higher additive heritability estimates when contrasted to those suggested by 
the cAIC with implications  on the expected  selection  response(s)  for the two traits. 
Furthermore,  the  rather  high  additive-maternal  genetic  correlation estimated  in  the 
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present study for BW35 could not be attributed to sire by fixed effects interactions as 
suggested by other studies   (e.g. Robinson 1996; Konstantinov and Brien 2003) since 
these interactions were of no importance here. Another possible explanation for inflated 
correlation might be the inability to account for other sources of (co)variance  such as 
the  dam-offspring environmental covariance. In a simulation study, Bijma (2006) has 
proposed that this covariance, when present and ignored, tends to inflate the estimated 
additive-maternal  genetic  correlation  approximately  equally  to  the  value  of  the 
environmental correlation. Antagonism between direct and maternal genetic effects is 
expected  to  limit  the  potential  for  genetic  improvement,  palliating  any  response  to 
selection on the offspring body weights.  Furthermore,  selecting for the body weight 
based on the animals’ EBVs might result in opposite or even unfavorable directions for 
maternal  attributes  due  to  this  negative  correlation  between  additive and  maternal 
genetic  effects.  However,  such  a  negative  covariance  could  be  of  importance  in 
generating novel variation and in maintaining the genetic variance. 

In an attempt to further quantify implications of model usage, such as on selection 
decisions, both the rank correlations of animals and the percentage of animals selected 
were calculated for the two best fitting models (M6 and M7). Based on these criteria, 
both models seemed to select the same animals with relatively small amount of losses 
for the breeding stock (6-16%). This was particularly true for BW35, the main selection 
criterion. However,  higher amount of loss of the best animals should be expected for 
BW7 as suggested by the lower rank correlations for the trait. 

Results of the bivariate analyses showed that under the application of a simple 
animal model (with additive genetic as the only random effects), the genetic correlation 
between the two traits was as high as 0.59. This result is in accordance with the genetic 
correlations in quails where values from 0.60 to 0.95 are reported (Saatci et al. 2003), 
depending on the correlated ages.  However, significantly lower estimates (0.11-0.13) 
for this parameter were calculated when additional random effects of maternal origin, 
genetic  or  environmental,  were  included  in  the  analysis.  This  result  was  rather 
unexpected considering that the two traits are recorded at only 28 days apart. To our 
knowledge, there are no genetic correlations of body weights at different ages reported 
in the literature  that  would allow for a direct  comparison with our results.  Relevant 
studies carried out in  other species  have shown that  the additive  genetic  correlation 
between birth and weaning weight might range from 0.12 to 0.87 in sheep (Maria et al. 
1993; Mousa et al. 1999; Hassen et al. 2003), from 0.64 to 0.89 in cattle (Tosh et al. 
1999; Plasse et al. 2002), when maternal effects are accounted for, and in the region of 
0.9 in turkeys for body weights measured in 14, 19 and 24 weeks of age (Kranis et al. 
2006). A plausible explanation for this low genetic correlation relates this finding with 
the high correlations between maternal effects of both genetic and environmental origin. 
A  significant  amount  of  this  positive  covariance  might  thus  be  accounted  for  as 
additive. Such a scenario is however not fully supported in the literature, although most 
of the research regards different species (i.e. sheep, cattle) and not-directly comparable 
ages. When maternal (genetic and/or environmental) and direct additive genetic effects 
are simultaneously considered, there seems to be only a slight impact on the estimate of 
the additive genetic correlation (Maria et al. 1993; Mousa et al. 1999; Plasse et al. 2002; 
Hassen  et  al.  2003).  Further  studies  in  broilers  are  in  need  to  comprehend  the 
mechanism of maternal  effects,  the magnitude  of additive-maternal  genetic  negative 
correlation and to elucidate the low additive genetic correlation between BW7 and BW35 

estimated here.
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3.6 Appendix
3.6.1 A closer investigation of ρ
Three  different  pedigree  examples  of  increasing  relatedness  were  used  for 

demonstration of the calculation of the effective degrees of freedom under the animal 
model, including additive genetic effects. The first pedigree (Pedigree A) consisted of 
18  non-related  animals.  The  additive  relationship  matrix  A  in  this  example  is  the 
identity matrix I. This is similar to the case examined in Hodges and Sargent (2001). In 
this example the effective degrees of freedom are expected to be close to: 
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where )(Htr  is the trace of the hat-matrix, n the number of observations per animal, N 
the number of animals, 2/1 eeh σ=  and 2/1 uuh σ= . If n=1, i.e. one record per animal is 
assumed, then ρ would be: 2)1(1 hN −+=ρ .

In the second pedigree (Pedigree B), 9 non-inbred offspring resulted out of 9 base 
animals (Figure A1). The total number of animals is 18 like in the first example. Thus, 
the effect of incorporating the additive relationship matrix A on the computation of  ρ 
was examined. Finally, a third pedigree (Pedigree C) was assumed, consisted of six base 
animals that gave birth to six offspring in the second generation. Offspring and parents 
were then mated (Figure A2) in order to examine the effect of close relationships and 
inbreeding  on  the  computation  of  ρ.  Following  Vaida and  Blanchard  (2005),  the 
penalizing  term of  the  log-likelihood  KR in  cAIC for  a  finite  sample  under  REML 
method analysis is given as:

( )
2

11ˆ
2
1

−−
+++

−−
−−=

pN
p

pN
pNKR ρ ,

where N the number of observations, p the number of classes of the fixed effects and ρ̂  
the estimated effective degrees of freedom. Note that  RK  converges to ρ̂ , when N is 
much larger than p. An animal model was assumed. The equation of the model was: 

iii euy ++= µ , where iy  denotes the phenotypic value (observation), μ is the overall 
mean of the observations,  iu  are the additive genetic values of animals and ie  denote 
the  residual  environmental  effects  associated  with  the  ith observation.  For  all  three 
pedigree  structures  50  different  heritabilities were  considered  ranging  from 0  to  1. 
Figure A3 depicts how ρ changes with 2h .

When  2h  tends to 1 (that is, when λ tends to 0) all three pedigrees exhibit the 
maximum degrees of freedom, which are equal to the total number of animals in the 
pedigree (N=18). This is to be expected since this extreme case implies infinite additive 
genetic  variance  and consequently  genetically  different  animals.  On the  other  hand, 
when 2

uσ  and 2h  converge to 0 (that is when λ approaches infinity), ρ tends to 1. This 
behavior  is  reasonable  since  02 =h  suggests  that  no additive  genetic  heterogeneity 
exists.  For  all  intermediate  values  of  2h ,  it  seems  that  ρ decreases  as  the relations 
between individuals get closer and/or inbreeding increases (Figure A3). Specifically, for 
the  same  ( )1,02 ∈h ,  Pedigree  C,  that  incorporates  inbreeding  and  closer  relations 
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between animals, has less effective degrees of freedom than Pedigree B, which in turn 
has smaller ρ compared to Pedigree A. This behavior appears intuitive and has been 
observed  in  a  number  of  diverse  but  related  contexts.  For  example,  Kramer  and 
Sugiyama  (2011) report  that  ρ decreases  as  collinearity  increases.  In  summary,  it 
appears that ρ is appropriately adjusted through the additive relationship matrix A. 

3.6.2 The comparison of ρ and pD

The effective degrees of freedom (ρ) were contrasted to the comparable measure 
of  the  effective  number  of  parameters  (pD)  (Spiegelhalter  et  al.  2002).  This  was 
achieved via two univariate models (M1 and M2). For the fitting of the models via the R-
package MCMCglmm (Hadfield 2010) a subset of 60,318 records was computationally 
feasible. The software used for the analyses were ASREML (Gilmour et al. 2009) and 
the R-package MCMCglmm (Hadfield 2010). The estimated pD  was derived under two 
different weakly-informative prior distributions: 1) uσ ,  cσ  ~ Uniform (0, 100) and 2)

2
uσ ,  2

cσ ~  Inverse-Gamma  (0.0001,  0.0001),  where uσ , cσ  refer  to  the  standard 
deviation of the direct genetic and the maternal environmental effects, respectively.

Table A1 shows that, although not identical,  ρ and  pD do not differ significantly 
for both traits, regardless of the model applied. For a simple additive animal model (M1) 
ρ was estimated to be 25563 and 16182, while pD was estimated as 24971 and 16160 for 
BW7 and BW35, respectively. This was also the case for model M2. In the model, which 
considered direct  genetic  and maternal  environmental  effects,  ρ was estimated to be 
23303 and  7145,  while  pD was  estimated  at  22480  and  7135  for  BW7 and  BW35, 
respectively.  In both cases, the relative difference  ρ/pD  did not exceed 3%. The small 
differences between ρ and pD could perhaps be attributed to the effect of the prior on the 
estimation of pD  and the fact that the variance components, estimated through REML, 
are implicitly assumed to be equal to the true values.

REFERENCES

Akaike,  H.  1973.  Information  theory  and  an  extension  of  the  maximum likelihood 
principle. Second International Symposium on Information Theory, Edition Petrov 
and Csaki, Budapest, Hungary.

Bijma,  P.  2006. Estimating  maternal  genetic  effects  in livestock.  Journal of  Animal  
Science 84: 800-806.

Crainiceanu, C. and Ruppert,  D. 2004. Likelihood ratio tests in linear mixed models 
with one variance component.  Journal of the Royal Statistical Society, Series B 
66: 165–85.

Danbaro,  G.,  Oyama,  K.,  Mukai,  F.,  Tsuji,  S.,  Tateishi,  T. and  Mae,  M.  1995. 
Heritabilities  and  genetic  correlations  from  a  selected  experiment  in  broiler 
breeders  using  Restricted  Maximum Likelihood.  Japanese  Poultry  Science 32: 
257-266.

Gilmour, A.R., Gogel, B.J., Cullis, B.R. and Thompson, R. 2009. ASReml User Guide 
Release 3.0. VSN International Ltd, Hemel Hempstead, UK.

Greven, S. and Kneib, T. 2010. On the behaviour of marginal and conditional Akaike 
Information Criteria in Linear Mixed Models. Biometrika  97: 773-789.

Hadfield,  J.  2010.  MCMC  methods  for  Multi-response  Generalized  Linear  Mixed 
Models: The MCMCglmm R Package. Journal of Statistical Software 33: 1-22.

33



Hartmann,  C.,  Johansson,  K.,  Strandberg,  E.  and  Rydhmer,  L.  2003.  Genetic 
correlations between the maternal genetic effect on chick weight and the direct 
genetic effects on egg composition traits in a White Leghorn line. Poultry Science 
82: 1-8.

Hassen, Y., Fuerst-Waltl, B. and Solkner, J. 2003. Genetic parameter estimates for birth 
weight, weaning weight and average daily gain in pure and crossbred sheep in 
Ethiopia. Journal of Animal Breeding and Genetics 120: 29–38.

Hodges, J.S. and Sargent, D.J. 2001. Counting degrees of freedom in hierarchical and 
other richly-parameterized models. Biometrika 88: 367-379.

Koerhuis, A.N.M and McKay, J.C. 1996. Restricted maximum likelihood estimation of 
genetic parameters for egg production traits in relation to juvenile body weight in 
broiler chickens. Livestock Production Science 46: 117-127.

Koerhuis,  A.N.M and Thompson,  R.  1997.  Models  to  estimate  maternal  effects  for 
juvenile body weight in broiler chickens.  Genetics Selection Evolution 29: 225-
249.

Konstantinov, K.V and Brien, F.D. 2003. Influence of sire by year interactions on the 
direct-maternal  genetic  correlation  for  weaning  weight  of  Western  Australian 
Merino sheep. Australian Journal of Agricultural Research 54: 723-729.

Kramer, N. and Sugiyama, M. 2011. The Degrees of Freedom of Partial Least Squares 
Regression. Journal of the American Statistical Association, to appear.

Kranis, A., Hocking, P.M., Hill, W.G. and Woolliams, J.A. 2006. Genetic parameters 
for a heavy female turkey line: Impact of simultaneous selection for body weight 
and total egg number. British Poultry Science 47: 685-693.

Kruuk, E.B. and Hadfield, J.D. 2007. How to separate genetic and environmental causes 
of similarity between relatives. Journal of Evolutionary Biology 20: 1890-1903. 

Le Bihan-Duval, E.,  Beaumont,  C. and Colleau, J.J. 1997. Estimation of the genetic 
correlations  between  twisted  legs  and growth  or  conformation  traits  in  broiler 
chickens. Journal of Animal Breeding and Genetics 114: 239-259.

Liang, H. and Wu, H. 2008. A note on conditional AIC for linear mixed-effects models. 
Biometrika 95: 773-778.

Lynch, M. and Walsh, B. 1998. Genetics and analysis  of quantitative traits.  Sinauer 
Associates, Sunderland, MA.

Maria, G.A., Boldban, K.G. and van Vleck, L.D. 1993. Estimates of variances due to 
direct and maternal effects for growth traits of Romanov sheep. Journal of Animal  
Science 71:  845-849.

Mignon-Grasteau, S., Beaumont, C., Le Bihan-Duval, E., Poivey, J.P., Rochambeau, H. 
and Ricard, F.H. 1999. Genetic parameters of growth curve parameters in male 
and female chicken. British Poultry Science 40: 44-51.

Mousa, E., van Vleck, D.L. and Leymaster, K.A. 1999. Genetic parameters for growth 
traits for a composite terminal sire breed of sheep. Journal of Animal Science 77: 
1659-1665.

Norris,  D. and Ngambi,  J.W.  2006. Genetic  parameter  estimates  for body weight in 
local Venda chickens. Tropical Animal Health and Production 38: 605-609.

34



Plasse, D., Verde, O., Fossi, H., Romero, R., Hoogesteijn, R., Bastidas, P. and Bastardo, 
J. 2002. (Co)variance components, genetic parameters and annual trends for calf 
weights in a pedigree Brahman herd under selection for three decades. Journal of  
Animal Breeding and Genetics 119: 141–153.

Robinson, D.L. 1996. Models which might explain negative correlations between direct 
and maternal genetic effects. Livestock Production Science 45: 111-122.

Saatci,  M., Ap Dewi,  I.  and Aksoy,  A.R. 2003. Application of REML procedure to 
estimate the genetic parameters of weekly liveweights in one-to-one sire and dam 
pedigree recorded Japanese Quail. Journal of Animal Breeding and Genetics 120: 
23–28.

SAS. 2009. SAS/STAT User’s Guide, Version 9.2, Cary, NC, USA.

Schwarz, G. 1978. Estimating the dimension of a model. Annals of Statistics 6: 461-464

Spiegelhalter, D.J.,  Best,  N.G.,  Carlin,  B.P.  and  van  der  Linde,  A.  2002. Bayesian 
measures of model complexity and fit. Journal of the Royal Statistical Society,  
Series B 75(4): 583-639 (with discussion).

Stone, M. 1977. An Asymptotic Equivalence of Choice of Model by Cross-Validation 
and  Akaike's Criterion.  Journal of the Royal Statistical Society, Series B 30(1): 
44-47.

Tosh, J.J., Kemp, R.A. and Ward, D.R. 1999. Estimates of direct and maternal genetic 
parameters for weight traits and backfat thickness in a multibreed population of 
beef cattle. Canadian Journal of Animal Science 79: 433-439.

Vaida, F. and Blanchard, S. 2005. Conditional Akaike information for mixed-effects 
models. Biometrika 92: 351-370.

Willham, R.L. 1972. The role of maternal effects in animal breeding: III.Biometrical 
aspects of maternal effects in animals. Journal of Animal Science 35: 1288-1293.

Wolansky, N.J., Renema, R.A., Robinson, F.E., Carney, V.L. and Fancher, B.I. 2004. 
Relationships among egg characteristics,  chick measurements  and early growth 
traits in ten broiler breeder strains. Poultry Science 86: 1784-1792.

Wolc,  A.,  White,  I.M.S.,  Avendano,  S.  and Hill,  W.G.  2009.  Genetic  variability  in 
residual  variation  of body weight  and conformation scores in  broiler  chickens. 
Poultry Science 88: 1156-1161.

35



Tables and Figures

Table 3.1  Heritability  estimates  h2 of  additive  (u),  maternal  genetic  (m)  effects  and 
correlation coefficient  (rum) between additive and maternal  genetic  effects  for juvenile 
body weight (BW) of broiler chicken.
Trait 2

uh 2
mh rum References

BW7w 0.10-0.33 Danbaro et al. 1995.
BW30w 0.14-0.34
BW6w 0.28 Koerhuis and McKay 1996.
BW6w 0.18-0.50 0.02-0.13 (-0.11)-(-0.92) Koerhuis and Thompson 1997.
BW35w 0.61 Le Bihan-Duval et al. 1997.
BW8w-M 0.39 0.24 Mignon-Grasteau et al. 1999.
BW36w-M 0.61 0.11
BW8w-F 0.45 0.21
BW36w-F 0.64 0.08
BW34d-M 0.21 Wolc et al. 2009.
BW34d-F 0.25
BW0w 0.36 0.16 -0.19 Norris and Ngambi 2006.
BW4w 0.25 0.13 -0.18
BW10w 0.41 0 0
BW21w 0.22 0 0
where F corresponds to females and Μ males; w or d age of broilers in weeks or days, 
respectively 
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Table 3.2 Estimates of variance components, genetic parameters, log-likelihoods and model selection criteria under seven univariate models for the body weight (g) of broilers at 7 (BW7) days of 
age. 

Model 2
uσ 2

mσ umσ 2
cσ 2

fsσ 2
eσ 2

pσ 2h 2
mh

2
p

um

σ
σ umr 2c

2

2

p

fs

σ
σ 2

TH logL mAIC BIC cAIC ρ

M1 216
(4)

- - - - 222
(2)

438
(2)

0.49
(0.01)

- - - - - 0.49
(0.01)

-695,689 1,391,380 1,391,390 1,527,932 68,276

M2 85
(4)

- - 47
(1)

- 275
(2)

408
(2)

0.21
(0.01)

- - - 0.12
(0.01)

- 0.21
(0.01)

-694,208 1,388,420 1,388,440 1,453,206 32,393

M3 85
(4)

- - - 47
(1)

275
(3)

407
(3)

0.21
(0.01)

- - - - 0.12
(0.01)

0.21
(0.01)

-694,186 1,388,376 1,388,396 1,453,339 32,482

M4 76
(5)

82
(2)

- - - 279
(2)

437
(3)

0.17
(0.01)

0.19
(0.01)

- - - - 0.27
(0.01)

-694,062 1,388,128 1,388,148 1,446,824 29,348

M5 110
(6)

111
(4)

-43
(4)

- - 262
(3)

440
(6)

0.25
(0.02)

0.25
(0.01)

0.10
(0.01)

-0.39
(0.03)

- - 0.23
(0.01)

-694,011 1,388,028 1,388,059 1,467,907 39,940

M6 72
(4)

42
(3)

- 22
(2)

- 281
(2)

416
(3)

0.17
(0.01)

0.10
(0.01)

- - 0.05
(0.01)

- 0.22
(0.01)

-693,790 1,387,586 1,387,617 1,444,399 28,199

M7 103
(7)

64
(5)

-38
(4)

23
(2)

- 265
(4)

417
(3)

0.25
(0.02)

0.15
(0.01)

0.09 
(0.01)

-0.47
(0.03)

0.06
(0.01)

- 0.19
(0.01)

-693,742 1,387,492 1,387,533 1,467,008 39,557

2
uσ : direct additive genetic variance; 2

mσ : maternal genetic variance; umσ = direct-maternal genetic covariance; 2
cσ : maternal environmental variance; 2

fsσ : full-sib variance; 2
eσ : residual 

variance; 2
pσ : phenotypic variance in g2; 2h : direct heritability; 2

mh : maternal heritability; umr : direct-maternal genetic correlation; 2c : maternal environmental variance as proportion of 2
pσ ; 

2
TH : total heritability; logL: natural log-likelihood; mAIC: marginal Akaike Information Criterion; BIC: Bayesian Information Criterion;  cAIC: conditional Akaike Information Criterion; ρ: 

effective degrees of freedom; standard errors in parenthesis
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Table 3.3 Estimates of variance components, genetic parameters, log-likelihoods and model selection criteria under seven univariate models for the body weight (g) of broilers at 35 (BW 35) days of 
age. 
Model 2

uσ 2
mσ umσ 2

cσ 2
fsσ 2

eσ 2
pσ 2h 2

mh
2
p

um

σ
σ umr 2c

2

2

p

fs

σ
σ 2

TH logL mAIC BIC cAIC ρ

M1 21,178
(490)

- - - - 27,826
(270)

49,004
(280)

0.43
(0.01)

- - - - - 0.43
(0.01)

-1,178,923 2,357,848 2,357,858 2,474,044 58,098

M2 9,979
(490)

- - 2,304
(110)

- 32,939
(270)

45,223
(240)

0.22
(0.01)

- - - 0.05
(0.01)

- 0.22
(0.01)

-1,178,564 2,357,132 2,357,152 2,419,212 31,040

M3 9,771
(470)

- - - 2,376
(100)

32,981
(260)

45,127
(240)

0.22
(0.01)

- - - - 0.05
(0.01)

0.22
(0.01)

-1,178,521 2,357,046 2,357,066 2,418,494 30,724

M4 11,320
(540)

3,171
(170)

- - - 32,330
(290)

46,821
(260)

0.24
(0.01)

0.07
(0.01)

- - - - 0.28
(0.01)

-1,178,616 2,357,236 2,357,256 2,425,640 34,202

M5 13,621
(790)

5,069
(320)

-2,948
(420)

- - 31,177
(410)

46,919
(270)

0.29
(0.02)

0.11
(0.01)

0.06
(0.01)

-0.35
(0.04)

- - 0.25
(0.01)

-1,178,588 2,357,182 2,357,213 2,437,672 40,245

M6 9,304
(490)

940
(160)

- 1,733
(130)

- 33,265
(270)

45,241
(240)

0.21
(0.01)

0.03
(0.01)

- - 0.04
(0.01)

- 0.22
(0.01)

-1,178,074 2,356,154 2,356,185 2,415,644 29,294

M7 12,462
(760)

2,305
(270)

-3,440
(380)

2,189
(130)

- 31,683
(390)

45,198
(260)

0.28
(0.02)

0.05
(0.01)

0.08
(0.01)

-0.64
(0.04)

0.05
(0.01)

- 0.19
(0.01)

-1,178,017 2,356,042 2,356,083 2,432,611 37,836

2
uσ : direct additive genetic variance; 2

mσ : maternal genetic variance;  umσ = direct-maternal genetic covariance;  2
cσ : maternal environmental variance;  2

fsσ : full-sib variance;  2
eσ : residual 

variance; 2
pσ : phenotypic variance in g2; 2h : direct heritability; 2

mh : maternal heritability; umr : direct-maternal genetic correlation; 2c : maternal environmental variance as proportion of 2
pσ ; 2

TH
: total heritability; logL: natural log-likelihood; mAIC: marginal Akaike Information Criterion; BIC: Bayesian Information Criterion;  cAIC: conditional Akaike Information Criterion; ρ: effective 
degrees of freedom; standard errors in parenthesis
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Table 3.4  Spearman  correlation  coefficients  of  EBVs  (above  the  diagonal)  and 
percentage of the best 1% males (m) and 10% females common (below the diagonal) 
under two univariate models (M6 and M7) of analysis, for body weight (g) of broilers at 
7 (BW7) and 35 (BW35) days of age.
Model Trait M6 M7 Trait M6 M7 Trait M6 M7

M6 BW7 1 0.97 BW7m 1 0.72 BW7f 1 0.79
M7 1 0.84 1 0.88 1
M6 BW35 1 0.99 BW35m 1 0.89 BW35f 1 0.94
M7 1 0.92 1 0.94 1

Table 3.5 Phenotypic correlation coefficient (rp), direct genetic correlation coefficient 
(ru),  maternal genetic correlation coefficient  (rm),  correlation coefficients between 
maternal environmental effects (rc), full-sib family effects (rfs) and residual correlation 
(re)  for the body weight (g) of broilers at 7  (BW7) and 35 (BW35) days of age, under 
seven bivariate models of analysis.
Models ru rm rc rfs re rp

M1 0.59 (0.01) - - - 0.38 (0.01) 0.46 (0.01)
M2 0.17 (0.03) - 0.91 (0.01) - 0.47 (0.01) 0.43 (0.01)
M3 0.16 (0.04) - - 0.90 (0.01) 0.47 (0.01) 0.43 (0.01)
M4 0.18 (0.04) 0.94 (0.01) - - 0.47 (0.01) 0.45 (0.01)
M5 0.17 (0.04) 0.90 (0.01) - - 0.49 (0.01) 0.44 (0.01)
M6 0.11 (0.04) 0.92 (0.03) 0.94 (0.02) - 0.47 (0.01) 0.43 (0.01)
M7 0.13 (0.04) 0.86 (0.02) 0.92 (0.02) - 0.49 (0.01) 0.42 (0.01)
standard errors in parenthesis

Table A1. Estimates of the effective degrees of freedom (ρ) and the effective number 
of parameters (pD), under two univariate homogeneous models of analyses  (M1 and 
M2) for the body weight of broiler chicken at 7 (BW7) and 35 (BW35) days of age. 
Model Trait ρ pD 
M1 BW7 25563 24971

BW35 16182 16160
M2 BW7 23303 22480

BW35 7145 7135
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Figure  A3. Effective degrees of freedom ρ under different levels of heritability 2h
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4.  Genetic  analysis  of  sexual  dimorphism  of  body  weight  in 
broilers

4.1 Summary
Variation  in  sexual  dimorphism  (SD) is  particularly  marked  in  meat  type 

chickens. This paper investigates the genetic basis of SD in an important economic trait 
such as body weight at the 35 days of age (BW) in broilers by applying quantitative 
genetic analysis. A large dataset comprising 203,323 BW records of a commercial line 
of broiler chicken was used. First, a bivariate approach was employed treating BW as a 
sex-specific  trait.  During  this  approach,  seven  bivariate  models  were  applied  and 
variances due to direct additive genetic, maternal genetic and maternal environmental 
effects  were  estimated  via  Restricted  Maximum Likelihood.  The  best-fitting  model 
included direct additive genetic, maternal genetic and maternal environmental effects 
with a direct-maternal genetic covariance. Differences between male and female direct 
heritabilities  were  non-significant  (0.28  vs.  0.29,  males  and  females,  respectively) 
implying  no  need  for  sex-specific  selection  strategies.  The  direct-maternal  genetic 
correlation  was  more  strongly  negative  in  males  than  in  females  (-0.72  vs.  -0.56), 
implying a more profound antagonism between direct  additive and maternal  genetic 
effects in this particular gender. The direct genetic correlation of BW between the two 
sexes  was  as  high  as  0.91  i.e.  only  slightly  lower  than  unity.  Second,  variance 
components and genetic parameters of two measures of SD i.e. the weight difference 
(Δ)  and the weight ratio (R) between the genders were estimated. Direct heritabilities 
for both measures were significantly different than 0 but of low magnitude (0.04). Apart 
from the additive-maternal  covariance no other  random effects  were found to be of 
importance for Δ and R. Results of the present study suggest that only minimal selection 
responses due to selection of Δ and/or R and a small capacity for amplifying or reducing 
the BW differences between the sexes are to be expected, in this specific population. 
Furthermore, selection pressure on BW is expected to amplify sexual dimorphism.

4.2 Introduction
Sexual  size  dimorphism  (SD),  i.e.  intersexual  variation  in  phenotypic  trait 

expression, is common throughout the animal kingdom. Sexual dimorphism is a key 
evolutionary feature that is related to ecology, behavior and life histories of organisms 
(Remes and Szekely 2010). Sexual dimorphism is commonly attributed to the combined 
effects of sex-specific  selection pressure, sex-biased phenotypic and genetic variation 
and  genetic  correlations  between  sexes  (Badyaev  2002)  and  is  presumed  to  reflect 
adaptive divergence in response to selection favoring different optimal character states 
in the two sexes (Blackenhorn 2005). In comparisons among species, SD increases with 
body size in species where males are larger and decreases with body size in species 
where females  are larger.  This phenomenon is known as the Rensch’s rule (Rensch 
1950). One of the most distinctive examples of SD in animal kingdom is body weight 
(BW) in domestic chickens which is consistent with the Rensch's rule (males 21.5% 
heavier  than  females;  Remes  and Szekely 2010).  The  extent  of  SD does  not  differ 
among breed categories (cock fighting, ornamental and breeds selected for egg and meat 
production). Although SD of chicken breeds is not different from wild pheasants and 
allies,  the wild ancestor  of chickens  (the red jungle fowl  G.gallus)  displays  a  more 
extreme SD (male 68.8% heavier) than any domesticated breed (Remes and Szekely 
2010). 
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In meat type chickens i.e. broilers, juvenile BW is reported to be under the control 
of both direct  and maternal genetic effects  (Koerhuis and Thompson 1997; Mignon-
Grasteau et al. 1998). There is also some evidence that  the covariance between direct 
and maternal genetic effects might be of importance as well (Koerhuis and Thompson 
1997). Sex-specific genetic analyses in broilers are scarce in the literature,  while the 
direct-maternal  genetic  covariance is usually omitted.  Mignon-Grasteau et  al.  (1998) 
have  shown  that  both  direct  and  maternal  heritabilities  of  BW  were  significantly 
different between sexes in chicken. In that study, the direct-maternal genetic covariance 
was ignored. The covariance in question is omitted from analyses because of restrictions 
arising from limited data size and/or pedigree structures that allow for the application of 
only simplified genetic models.  

One way of investigating the importance of the various genetic effects on SD is 
the  application  of  bivariate  models  by  treating  measures  on  males  and  females  as 
distinct  traits.  If the correlation between the two traits  is significantly different  than 
unity, then a sex-specific analysis may be justified. This approach takes into account 
any differences between the sexes and is useful when the primary target is the trait itself 
(Falconer and Mackay 1996). A second way of analyzing SD is the combination of 
measures taken on both sexes i.e. constructing an artificial trait. A common measure 
here is  the difference  in  weight  between males  and females,  hereafter  called  sexual 
difference  and  denoted  Δ.  Eisen  and  Legates  (1966)  were  the  first  to  develop  an 
expression for the heritability of Δ, obtained from full-sib family means. An alternative 
expression is  the  ratio  (R)  of  male  to  female  body weight  (Mignon-Grasteau  et  al. 
1998). This parameter has the advantage of being scale free but it clearly shows some 
departure from normal distribution. Genetic analysis of these combined traits has the 
advantage of targeting the sex differences directly since selection based on these traits 
may amplify or reduce the sex differences. Under selection for inter-sexual uniformity, 
correlated responses such as sex-specific BWs are becoming of increasing interest for 
both from an evolutionary and a breeding point of view.

Given that the genetic basis of SD in broilers  remains  rather elusive,  we have 
conducted the present study with the aim to provide answers to the following questions: 
a)  is  there  sexual  differentiation  of  direct  and  maternal  genetic  effects  on  BW  in 
broilers, b) is the covariance between the direct and maternal effects of importance and 
possibly  different  between  the  two  sexes,  c)  are  two  typical  measures  of  SD  (sex 
difference and sex ratio) under genetic control and d) what are the expected correlated 
responses for BWs when selecting for reduced SD?

4.3 Materials and methods
4.3.1 Data description, trait definition and fixed effect structure
Data on BW at 35 days of age from a male broiler line were made available by 

Aviagen  Ltd.  A  preliminary  analysis  in  SAS  (2009)  was  performed  to  identify 
significant fixed effects. These included the week of hatch of animals (275 classes), 
spanning  years  2003-2008,  having  on  average  4  discrete  generation  equivalents. 
Progeny originated from groups of contemporary parents, referred to as mating groups 
(93 classes), which were also fitted as fixed effects in the analysis to account for the 
differences  in  the  genetic  level  of  parents.  Finally,  the  age  of  sires  and  dams  was 
considered as fixed effect by building four classes (9 - 12 months), ensuring that each 
one has sufficiently large number of records. When approximately equal precision is 
desirable in the estimates of paternal half-sibs variance and full-sibs variance, Lynch 
and Walsh (1998) suggested the allocation of at least 3 to 4 females per male and the 
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maintenance of full-sib families of approximately )/2/(1 22
ps σσ progeny per female (but 

no less than 2), where 2
sσ  the sire variance and 2

pσ  the phenotypic variance. Thus, two 
editing criteria were applied: 1) every dam had to have at least 4 offspring with records 
and 2) every sire should mate with at least 3 dams. The final dataset consisted of 99,330 
male and 103,993 female records. The pedigree included a total of 205,415 animals, of 
which 980 sires and 7,870 dams with progeny. The full-sib families consisted of 2 to 49 
(average 12.81) males and 2 to 52 (average 13.48) females.

Assuming that both sexes appear in a litter, two artificial traits were constructed 
describing the sex difference (Δ) and the sex ratio (R) of male-female BW of randomly 
chosen pairs of full-sibs. Pairing of male and female records within full-sib families was 
made at random until either male or female records were exhausted. Surplus male or 
female records within a litter were omitted. Thus, 54,661 male-female pairs out of 6,995 
full-sib families were made available for analysis. Table 4.1 shows descriptive statistics 
of  all  sexual  dimorphism traits  constructed.  The  sex  difference  (Δ) approximated  a 
normal distribution and had an average of 275.4 g, while records regarding R were net 
numbers  (average  1.133).  Log  transformation  of  R  was  used  in  an  attempt  to 
approximate normality and will refer as R hereafter. In order to account for a possible 
scale effect, an additional trait (called weighted sex difference and denoted wΔ) was 
also constructed by dividing Δ by the average BW of the full-sib pairs. 

4.3.2 Bivariate analysis
Males were significantly heavier than females and differences in male and female 

phenotypic variances were also found to be substantial (Table 4.1). For this reason, BW 
was considered as a sex-limited trait and male (BWm) and female (BWf) weights were 
separately analyzed. Seven bivariate animal models were applied here. Model M1 was a 
purely direct additive model, while model M2 allowed for the inclusion of c2 effects. 
Model M3 included the direct genetic and the full-sib family effects, in order to account 
for possible dominance effects. A maternal genetic effect was incorporated in model M4 

in addition to the direct additive genetic effects, assuming zero direct-maternal genetic 
covariance ( umσ ). Model M5 was as model M4, but with non-zero umσ . Models M6 and 
M7 corresponded  to  models  M4 and  M5,  respectively,  but  also  included  maternal 
environmental effects. In summary, the models in matrix notation were as follows:
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with cov(u,m)=0   (M4)
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with  Aummu σ=),cov(    (M5)
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with cov(u,m)=0   (M6)
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with Aummu σ=),cov(    (M7),

where subscript 1 (2) pertains to male (female) BW; y1(2) = n1(2)×1 vector of observations 
(n1(2) = number of male {female} records = 99,330 {103,993}),  b1(2) = p×1 vector of 
fixed effects (p = number of fixed effects classes = 372),  u1(2) = q×1 vector of direct 
additive genetic effects (q = number of additive effects = 205,415), m1(2) = d×1 vector of 
maternal genetic effects (d = total number of females = 105,847), c1(2) = k×1 vector of 
maternal environmental effects (k = number of dams with offspring = 7,870), fs1(2)= s×1 
vector of full-sib families (s= number of full-sib families= 8,609), e1(2) = n1(2)×1 vector 
of residuals; X1(2), Z1(2), Ζm1(2), Ζc1(2) and 1(2)fsZ  denote the incidence matrices relating the 
observations to the corresponding fixed and random effects.  The vector of direct and 
maternal genetic effects was assumed to follow the multivariate normal distribution:
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where  0N denotes  a  N×1 vector  of  0s,  ⊗  denotes  the  Kronecker  product,  A is  the 
additive relationship matrix
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is  the  4×4  (co)variance  matrix  between  direct  and  maternal  genetic  effects,  2
1(2)uσ  

denotes to the direct genetic variance,  21uuσ  the direct genetic covariance,  2
1(2)mσ  the 

maternal  genetic  variance,  21mmσ  the  maternal  genetic  covariance  and  1(2)1(2)muσ  the 
direct-maternal  genetic  covariance.  Maternal  environmental  effects  for the two traits 
were assumed to follow the multivariate normal distribution:
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where kI  is an identity matrix of order k, 
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is  the  2×2  (co)variance  matrix  between  maternal  environmental  effects, 2
1(2)cσ  the 

maternal environmental variance and 21ccσ  the maternal environmental covariance. The 
full-sib family effect was also assumed to follow the multivariate normal distribution: 
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where sI  is an identity matrix of order s, 
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is the 2×2 (co)variance matrix between full-sib family effects,  2
1(2)fsσ  denotes the full-

sib  family  variance  and  21 fsfsσ  the  full-sib  families  covariance.  Finally,  residuals, 
regarding different  animals  (males-females),  were assumed independent  between the 
two traits:
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where nI  is an identity matrix of order n and







= 2

2

2
1

0
0
e

e

σ
σR

is the 2×2 residual (co)variance matrix, where 2
1(2)eσ  is the residual variance. 

4.3.3 Sexual dimorphism traits
Given that  the two artificial  traits  concern full-sibs  pairs,  animal  models  were 

substituted by sire and dam models. Eight mixed linear models were applied for each 
artificial  trait  (Δ,  R  and  wΔ).  Model  M1΄ and  M2΄ were  a  sire  and  a  dam  model, 
respectively.  Models M3΄ and M4΄ were sire models that  allowed for the inclusion of 
maternal environmental effects and full-sib family effects, respectively.  A dam effect 
was incorporated in model M5΄ in addition to the sire effect, assuming zero sire-dam 
genetic covariance sdσ . Model M6΄ was as model M5΄, but with non-zero sdσ . Models M7΄ 

and M8΄ corresponded to models  M5΄ and  M6΄, respectively, but also included maternal 
environmental  effects.  The  same  fixed  effects  as  with  the  bivariate  analysis  were 
applied. In summary, the models in matrix notation were as follows:

esZXby s ++=   (M1΄)

edZXby d ++=   (M2΄)

ecZsZXby cs +++=   (M3΄)

efsZsZXby fss +++=   (M4΄)

edZsZXby ds +++= , with cov(s,d)=0  (M5΄)

edZsZXby ds +++= , with Asdσ=)ds,cov(  (M6΄)
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ecZdZsZXby cds ++++= , with cov(s,d)=0  (M7΄)

ecZdZsZXby cds ++++= , with Asdσ=)ds,cov(   (M8΄),

where y = n1×1 vector of observations (n1 = number of pair records = 54,661), b = p×1 
vector of fixed effects (p = number of fixed effects classes = 372),  s = q1×1 vector of 
sire effects (q1 = number of sires = 963), d = d1×1 vector of dam effects (d1 = number of 
dams = 6,615), c = k1×1 vector of maternal environmental effects (k1 = number of dams 
with offspring = 6,615),  fs = s1×1 vector of full-sib families (s1 = number of full-sib 
families  =  6,995),  e =  n1×1 vector  of  residuals;  X, Zs, Ζm, Ζc and  fsZ  denote  the 
incidence  matrices  relating  the  observations  to  the  corresponding fixed  and random 
effects.  To  retrieve  estimates  of  variance  components,  model  components  were 
decomposed  as  follows: 22

4
1

us σσ = ,  ummud σσσσ ++= 222

4
1  and 

umusd σσσ 2
1

4
1 2 += .  Thus,  it  is  derived  that:  22 4 su σσ = ,  2

2
12 usdum σσσ −=  and 

222 2 ssddm σσσσ +−= , where  2
sσ  denotes the sire variance,  2

dσ  the dam variance and 

sdσ  the sire-dam covariance. 

Estimates  of  direct  ( 2h )  and  maternal  ( 2
mh )  heritability  as  well  as  maternal 

environmental effects ( 2c ) were calculated as ratios of estimates of direct additive ( 2
uσ

), maternal genetic ( 2
mσ ) and maternal environmental ( 2

cσ ) variances, respectively to 
phenotypic variance ( 2

pσ ). The phenotypic variance accounts for the sum of all variance 
components, according to the model. The direct-maternal genetic correlation (rum) was 
computed as the ratio of the estimate of direct-maternal genetic covariance ( umσ ) to the 
product of the square roots of estimates of  2

uσ  and  2
mσ . In addition,  Willham (1972) 

was followed in calculating the total heritability ( 2
TH ) for BW by:

2

22
2 5.15.0

p

ummu
TH

σ
σσσ ++

= .

The estimation of variance components in all models was carried out with ASREML 3.0 
(Gilmour et al. 2009).

Bivariate analyses  between the two sex weights and the SD measures were also 
applied  using  models  M1΄-M8΄ in  order  to  evaluate  the  genetic  and  phenotypic 
correlations  among the traits.  However,  only the sire model  M1΄ converged.  On this 
occasion the genetic correlation PSGr between the primary trait P (BWm or BWf) and the 

secondary  trait  S (Δ or  R)  was  given  by:  
SP

SP

PS
ss

ss
Gr σσ

σ
= ,  where  SPssσ the  covariance 

between the sire effects and  Psσ ,  Ssσ  the respective standard deviations. Note that a 
quadravariate sire model that included all traits failed to converge.

Besides the direct estimation of the genetic parameters of the sexual dimorphism 
traits,  certain  approximations  are  suggested  in  the  literature  based  on  the  variance 
component estimation of the bivariate analysis of the primary traits. The heritability of 
the sex difference (Δ) is approximated according to Hanrahan and Eisen (1973) by: 
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The heritability of the ratio of male to female body weight (R) was approximated using 
Sutherland’s formula (Sutherland, 1965):
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where  2
)2(1h denotes  the  heritability  of  the male  (female)  trait,  )2(1CV  the phenotypic 

coefficient of variation for the male (female) trait, 21uur  and  21ppr  the additive genetic 
and  phenotypic  correlations  between  traits  in  males  and  females. All  the  above 
approximation formulae were used to compare our findings. 

4.3.4 Model evaluation criteria
Model  evaluation and comparison was carried out via two criteria:  the Akaike 

Information  Criterion  (AIC;  Akaike  1973)  and  the  Bayesian  Information  Criterion 
(BIC; Schwarz 1978).  The AIC gives  an unbiased estimator of the Kullback-Leibler 
divergence of the current model from the true model. In addition, it can be shown that 
AIC dispenses with the need for a true model and chooses the model with the best short-
term predictive ability (Stone 1977). When a true model exists and lies within the range 
of models entertained in the analysis, the BIC (Schwarz 1978) is consistent, in the sense 
that the true model will be selected as more data accrue. All model selection criteria 
require the computation of the deviance (D): D = Lyp log2))ˆ|(log(2 −=− θ , where θ 
denotes the px1 vector of the model parameters and )ˆ|( θyp  the likelihood of the data y 
evaluated at the maximum likelihood estimate θˆ . Akaike (1973) showed that the correct 
term for penalizing the deviance is twice the number of the model parameters p. Thus, 
he defined pLAIC i 2log2 +−=  as the model selection criterion. A Bayesian argument 
was utilized by Schwarz (1978) to prove that the appropriate penalization term is plog 
(n) thus defining: npLBIC i loglog2 +−= , where n is the number of data observations.

4.4 Results
4.4.1 Body weights
Table 4.2 summarizes the estimated variance components and genetic parameters 

of males and females, along with likelihoods and the information criteria for the six out 
of seven bivariate models. Model M5, which accounted for the  direct genetic effects, 
maternal  genetic  effects  and  a  non-zero  direct-maternal  genetic  covariance,  did  not 
achieve convergence and is thus not presented. Across models, direct heritability (h2) 
for males ranged from 0.19 to 0.45, while maternal heritability (h2

m) was between 0.02 
and 0.08. Furthermore, maternal environmental variance (c2) accounted for 0.05-0.06 of 
the total phenotypic variance. In females, h2 varied from 0.23 to 0.44, while h2

m ranged 
from 0.02 to 0.07, depending on the model. Here, c2 accounted for 0.04-0.05 of the total 
phenotypic variance. 

According  to  both information  criteria,  the  best  model  included  direct  genetic 
effects, maternal genetic effects, maternal environmental effects and a non-zero direct-
maternal genetic covariance (model M7). In this model, h2 was comparable across sexes 
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(0.28 and 0.29, for males and females, respectively) and this was also the case for h2
m 

(0.07 and 0.05 for males and females, respectively). The same applied for c2 (0.06 and 
0.04  for  males  and  females,  respectively).  Notably,  the  estimated  direct-maternal 
genetic correlation rum was significantly (p<0.05) higher in males than in females (-0.72 
vs. -0.56).

The genetic and phenotypic correlations between the two sexes are shown in Table 
4.3. Under a simple animal model, the additive genetic and phenotypic correlation was 
estimated  as  high  as  0.95  and  0.43,  respectively.  While  the  latter  estimate  varied 
considerably across models (from 0.25 to 0.43), the additive genetic correlation ranged 
slightly  (0.91 -  0.95).  The  correlations  between the  maternal  genetic  effects  ranged 
slightly  (0.86  -  0.94)  and  this  was  also  the  case  for  the  maternal  environmental 
correlation (0.91 to 0.94). According to model M7, which was proposed by both criteria, 
the  additive  genetic  correlation  was estimated  0.91,  the maternal  genetic  correlation 
0.93 and the correlation of maternal environmental effects 0.94. Note that during all 
analyses,  the residual correlation was set  to zero,  as the residuals  regarded different 
animals  (males  or  females),  thus  resulting  in  a  remarkably  low  estimation  of  the 
phenotypic correlation (0.28) between the two traits.

4.4.2 Sexual dimorphism traits
Tables 4.4 and 4.5 summarize the variance components and genetic parameters 

estimations of  Δ and (log-transformed) R, respectively.  Given that point estimates of 
wΔ were not significantly different than those for Δ and R, only detailed results for the 
first two traits  (Δ and R) are presented.  For both SD measures,  h2 was  significantly 
different than 0 (P<0.05) and ranged from 0.04 to 0.10, across models. Maternal genetic 
effects  were  of  minor  importance  and  practically  equal  to  null.  In  both  cases,  c2 

accounted for a very small amount (0.017-0.022) of the total phenotypic variance. In 
both SD measures, both criteria suggested a model that incorporated direct genetic and 
c2 effects, with a non-zero covariance between them (model M8΄). In this model, additive 
genetic effects were found to be significant different from zero (h2=0.04) while a strong 
negative  rum was  detected  for  both  SD  measures  (-0.70  and  -0.63  for  Δ and  R, 
respectively).  Finally,  the  approximated  heritabilities  of  Δ and  R,  as  suggested  by 
Hanrahan and Eisen (1973) and Sutherland (1965), respectively,  were also calculated 
and no significant differences were detected, when compared to our estimates.

4.4.3 Genetic and phenotypic correlations between BW and SD
The genetic  (rG) and phenotypic  (rP) correlations between BW and the two SD 

measures are presented on Table 4.6. The genetic and phenotypic correlations between 
the two SD measures were estimated extremely high (0.97 ± 0.01 and 0.98 ± 0.01, 
respectively). The genetic correlation between Δ and BWm was positive and of low to 
medium magnitude (0.34). The respective rG between Δ and ΒWf was negative and of 
low magnitude (-0.20). An even lower rG was estimated between R-BWm (0.11) that 
could be treated as zero, considering the standard error of the estimate. Here, rG between 
the  R-BWf was  higher  (-0.32)  than  that  with  Δ.  As  reasonably  expected,  both  SD 
measures were positively and negatively correlated with BWm and BWf, respectively. 

4.5 Discussion
4.5.1 Body weights
The present study focused on the various genetic effects – maternal included – that 

might play an important role on SD of BW  in broilers. When the focus was on sex 

49



specific  BWs,  all  the model  evaluation criteria outlined the importance of the direct 
genetic, the maternal genetic, the maternal environmental effects as well as the direct-
maternal  genetic covariance.  Koerhuis and Thompson (1997) and Ilska et  al.  (2011) 
have already reported the significance of maternal effects on BW in broilers and the 
existence of a significantly negative rum for this trait.  In the present study, estimates of 
direct  heritabilities  were  of  medium  magnitude  and  not  different  between  sexes 
indicating that the two BWs are under the control of the same genes. Such estimates 
verify the existence of abundant additive variance in both sexes warranting appreciable 
selection  responses  and no need for  undertaking  sex-specific  selection  strategies.  In 
contrast to present findings, sex differences of h2 estimates are reported in the literature, 
in both chicken (0.28 vs. 0.43) and Muscovy ducks (0.40 vs. 0.51) (Mignon-Grasteau et 
al. 1998). Furthermore, there was a tendency for lower h2

m in females than males (0.05 
vs.  0.07), as already observed in chicken and Muscovy ducks (Mignon-Grasteau et al. 
1998), in quails (Aggrey and Cheng 1994) and in turkeys (Chapuis et al. 1996). 

The direct genetic correlation between the two traits was only slightly lower than 
unity suggesting that the two traits could be practically treated as one. Therefore the two 
traits  are  fully  inter-dependent  and  independent  selection  of  sexes  is  not  possible 
(Falconer  and  Mackay  1996).  Lower  genetic  correlations  are  reported  by  Mignon-
Grasteau et al. (1998) in chicken (0.84) and Muscovy ducks (0.85). A salient finding of 
the present study was the higher rum observed in males than in females (-0.72 vs. -0.56) 
suggesting  a  more  profound  antagonism  between  the  two  effects  in  this  particular 
gender. As the equation of total heritability (Willham 1972) suggests, this negative σum 

is expected to have a limiting effect on selection response for the trait. A most plausible 
explanation for this strong negative covariance is antagonistic pleiotropy (Roff 2002) 
i.e. genes having antagonistic pleiotropic effects on maternal performance and offspring 
traits. Extensive meta-analysis of weight traits in domestic animals (Wilson and Reale 
2006)  strongly  support  this  hypothesis  while  underlining  the  role  of  antagonistic 
pleiotropy in maintaining genetic variance (both direct additive and maternal genetic) in 
a  trait  under  selection  (Kirkpatrick  and  Lande  1989;  Rasanen  and  Kruuk  2007).  It 
should be noted, however, strong negative rum may be spuriously estimated as a result of 
particular  features  of the data  structure (Maniatis  and Pollott  2003) or by failure  to 
account for various interactions such as sire  by  herd or sire  by year (Robinson 1996; 
Lee and Pollak 1997). These should be, however, ruled out in the present study since we 
had enough dam-offspring pairs and no significant sire interactions with any other term 
were of importance. 

4.5.2 Sexual dimorphism
While  sex-specific  BWs were  found to  be  under  the  control  of  a  plethora  of 

genetic effects, this was not the case for the combined weights whether difference or 
ratio. Only additive genetic effects were different than zero here and these were of low 
magnitude (h2=0.04). This finding suggests that modification of SD through selection 
might  be  possible, when  attempting  inter-sexual  uniformity,  but  very  slow  genetic 
progress should be anticipated. Other studies have reported higher h2 in chicken (0.08) 
and Muscory ducks (0.13) (Mignon-Grasteau et al. 1998). Results of the present study 
suggest that selection for improved i.e. reduced SD results in unbalanced responses for 
the sex-specific BWs. Given the genetic correlations estimated herein, reduced SD is 
associated  with  decreasing  and increasing  BW for  males  and females,  respectively. 
These  changes  are,  however,  not  balanced  between  the  sexes  since  an  appreciable 
reduction of SD would request higher increases of BW in females than decreases in 
males. In any case, the two SD measures are highly inter-correlated fully supporting the 
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hypothesis of a co-evolution of the two traits.  In addition, the correlations estimated 
herein convey that  selection for higher  BW is expected  to amplify SD with a clear 
divergence between the sexes. Why this is also the case for BW in broilers remains an 
interesting  scientific  issue.  Numerous  studies  in evolutionary biology across  various 
species have been carried out in attempts to answer this question and it becomes clear 
that  animal  breeders  have  many  lessons  to  be  taught  by  studying  the  respective 
literature. 

In  conclusion,  direct  and  maternal  heritabilities  between  the  sexes  pose  no 
significant  differences.  Thus no sex specific  selection strategies  are warranted while 
BW between sexes can be treated as one trait. The low direct heritabilities of the two 
SD measures suggest only a minimal  response to selection and a small  capacity for 
amplifying  SD  in  this  specific  population.  Unless  a  restriction  index  is  practiced, 
selection  pressure  on  BW is  expected  to  amplify  SD leading  to  higher  divergence 
between sexes.
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Tables 

Table 4.1 Distribution of the sex difference (Δ), the sex ratio (R), the logarithm of the sex 
ratio (logR) and the weighted sex difference (wΔ) for body weight at 35 days of age.

min Q1 median mean Q3 max sd sk kurt
Δ -1030 110 280 275.44 440 1580 259.37 0.010 0.876
R 0.552 1.050 1.125 1.133 1.204 2.618 0.135 0.982 4.793
logR -0.594 0.049 0.118 0.118 0.186 0.894 0.116 0.059 0.951
wΔ -0.577 0.049 0.118 0.118 0.185 0.962 0.115 0.047 1.773

min:  minimum value;  Q1:  first  quartile  (25%);  Q3:  third  quartile  (75%);  max:  maximum 
value; sd: standard deviation; sk: skewness; kurt: kurtosis
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Table 4.2 Estimates of variance components, genetic parameters, log-likelihoods and model selection criteria under six bivariate models for the body weight (g) of male (m) and 
female (f) broiler chicken at 35 days of age. 

Model Sex 2
uσ 2

mσ umσ 2
cσ 2

fsσ 2
eσ 2

pσ 2h 2
mh

2
p

um

σ
σ umr 2c

2

2

p

fs

σ
σ 2

TH logL AIC BIC

M1

m 22,884
(600)

- - - - 28,229
(350)

51,114
(350)

0.45
(0.01)

- - - - - 0.45
(0.01)

-1,177,305 2,354,612 2,354,622

f 20,368
(500)

- - - - 25,913
(300)

46,280
(300)

0.44
(0.01)

- - - - - 0.44
(0.01)

M2

m 9,524
(500)

- - 2,833
(150)

- 34,362
(300)

46,720
(300)

0.20
(0.01)

- - - 0.06
(0.01)

- 0.20
(0.01)

-1,176,907 2,353,818 2,353,838

f 10,775
(500)

- - 2,086
(100)

- 30,151
(300)

43,012
(300)

0.25
(0.01)

- - - 0.05
(0.01)

- 0.25
(0.01)

M3

m 9,427
(500)

- - - 2,878
(150)

34,347
(300)

46,652
(300)

0.20
(0.01)

- - - - 0.06
(0.01)

0.20
(0.01)

-1,176,862 2,353,728 2,353,748

f 10,411
(500)

- - - 2,215
(100)

30,252
(300)

42,877
(300)

0.24
(0.01)

- - - - 0.05
(0.01)

0.25
(0.01)

M4

m 11,398
(600)

3,655
(200)

- - - 33,549
(360)

48,601
(320)

0.23
(0.01)

0.08
(0.01)

- - - - 0.27
(0.01)

-1,176,970 2,353,944 2,353,964

f 11,780
(600)

3,000
(200)

- - - 29,705
(330)

44,486
(300)

0.26
(0.01)

0.07
(0.01)

- - - - 0.29
(0.01)

M6

m 9,064
(500)

835
(150)

- 2,286
(150)

- 34,581
(300)

46,767
(300)

0.19
(0.01)

0.02
(0.01)

- - 0.05
(0.01)

- 0.20
(0.01)

-1,176,865 2,353,736 2,353,767

f 9,955
(500)

990
(150)

- 1,504
(150)

- 30,547
(300)

42,996
(300)

0.23
(0.01)

0.02
(0.01)

- - 0.04
(0.01)

- 0.24
(0.01)

M7

m 12,895
(800)

3,031
(400)

-4,509
(500)

2,719
(150)

- 32,649
(460)

46,785
(300)

0.28
(0.02)

0.07
(0.01)

0.10
(0.01)

-0.72
(0.04)

0.06
(0.01)

- 0.17
(0.01)

-1,176,792 2,353,592 2,353,633

f 12,649
(800)

2,167
(300)

-2,927
(400)

1,866
(150)

- 29,205
(400)

42,960
(300)

0.29
(0.02)

0.05
(0.01)

0.07
(0.01)

-0.56
(0.03)

0.04
(0.01)

- 0.21
(0.01)

2
uσ : direct additive genetic variance; 2

mσ : maternal genetic variance;  umσ = direct-maternal genetic covariance;  2
cσ : maternal environmental variance;  2

fsσ : full-sib variance; 
2
eσ : residual variance;  2

pσ : phenotypic variance in g2;  2h : direct heritability;  2
mh : maternal heritability;  umr : direct-maternal genetic correlation;  2c : maternal environmental 

variance as proportion of 2
pσ ;  2

TH : total heritability; logL: natural log-likelihood; AIC: Akaike Information Criterion; BIC: Bayesian Information Criterion;  standard errors in 
parenthesis;
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Table 4.3 Phenotypic correlation coefficient  (rp),  direct genetic correlation 
coefficient (ru), maternal genetic correlation coefficient (rm), correlation coefficients 
between maternal environmental effects (rc) and between full-sib family effects (rfs) 
for the body weight (g) of male and female broiler chicken at 35 days of age, under 
six bivariate models of analysis.
Models ru rm rc rfs rp

M1 0.95 (0.01) - - - 0.43 (0.01)
M2 0.91 (0.01) - 0.87 (0.02) - 0.26 (0.01)
M3 0.91 (0.01) - - 0.92 (0.02) 0.25 (0.01)
M4 0.92 (0.01) 0.97 (0.01) - - 0.30 (0.01)
M6 0.91 (0.01) 0.93 (0.03) 0.94 (0.03) - 0.25 (0.01)
M7 0.91 (0.01) 0.93 (0.03) 0.94 (0.03) - 0.28 (0.01)
standard errors in parenthesis
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Table 4.4  Estimates of variance components, genetic parameters, log-likelihoods and model selection criteria under eight univariate models for the sex difference (Δ) in body 
weight (g) of male-female fullsib broiler chicken at 35 days of age. 
Model 2

uσ 2
mσ umσ 2

cσ 2
fsσ 2

eσ 2
pσ 2h 2

mh
2
p

um

σ
σ umr 2c

2

2

p

fs

σ
σ 2

TH logL AIC BIC

M1΄ 3831
(460)

- - - - 65815
(400)

66773
(400)

0.06
(0.01)

- - - - - 0.06
(0.01)

-330,760 661,522 661,531

M2΄ 6892
(700)

- - - - 65180
(400)

66903
(400)

0.10
(0.01)

- - - - - 0.10
(0.01)

-330,790 661,582 661,591

M3΄ 2856
(440)

- - 1481
(170)

- 64531
(400)

66726
(400)

0.04
(0.01)

- - - 0.022
(0.003)

- 0.04
(0.01)

-330,711 661,426 661,444

M4΄ 2756 
(440)

- - - 1616 
(170)

64416
(400)

66722
(400)

0.04
(0.01)

- - - - 0.024
(0.003)

0.04
(0.01)

-330,710 661,424 661,442

M5΄ 3609 
(350)

1018
(150)

- - - 65018
(400)

66822
(400)

0.05
(0.01)

0.015
(0.002)

- - - - 0.06
(0.01)

-330,719 661,442 661,460

M6΄ 3145 
(440)

1085
(280)

-888
(300)

- - 65052
(400)

67163
(440)

0.05
(0.01)

0.016
(0.004)

0.013
(0.005)

-0.48
(0.10)

- - 0.04
(0.01)

-330,717 661,440 661,467

M7΄ 2802
(440)

364
(130)

- 1113
(200)

- 64548
(400)

66726
(400)

0.04
(0.01)

0.006
(0.002)

- - 0.017
(0.003)

- 0.05
(0.01)

-330,704 661,414 661,441

M8΄ 2757
(430)

473
(200)

-807
(260)

1129
(200)

- 64552
(400)

67011
(430)

0.04
(0.01)

0.007
(0.003)

0.012
(0.004)

-0.70
(0.10)

0.017
(0.003)

- 0.03
(0.01)

-330,696 661,404 661,440

2
uσ : direct additive genetic variance; 2

mσ : maternal genetic variance; umσ = direct-maternal genetic covariance; 2
cσ : maternal environmental variance; 2

fsσ : full-sib variance; 2
eσ : 

residual variance; 2
pσ : phenotypic variance in g2; 2h : direct heritability; 2

mh : maternal heritability; umr : direct-maternal genetic correlation; 2c : maternal environmental variance as 

proportion of 2
pσ ; 2

TH : total heritability; logL: natural log-likelihood; AIC: Akaike Information Criterion; BIC: Bayesian Information Criterion;  standard errors in parenthesis
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Table 4.5 Estimates of variance components (multiplied by 105), genetic parameters, log-likelihoods and model selection criteria under eight univariate models for the logarithm 
of the sex ratio (R) of body weight of male-female fullsib broiler chicken at 35 days of age. 
Model 2

uσ 2
mσ umσ 2

cσ 2
fsσ 2

eσ 2
pσ 2h 2

mh
2
p

um

σ
σ umr 2c

2

2

p

fs

σ
σ 2

TH logL AIC BIC

M1΄ 68 
(8)

- - - - 1329 
(8)

1346
(8)

0.05
(0.01)

- - - - - 0.05
(0.01)

-240,303 480,608 480,617

M2΄ 122
(14)

- - - - 1318
(8)

1348 
(8)

0.09
(0.01)

- - - - - 0.09
(0.01)

-240,360 480,722 480,731

M3΄ 52
(8)

- - 27
(4)

- 1305
(8)

1345
(8)

0.04
(0.01)

- - - 0.020
(0.003)

- 0.04
(0.01)

-240,211 480,426 480,444

M4΄ 50 
(10)

- - - 29
(4)

1303
(10)

1345
(8)

0.04
(0.01)

- - - - 0.022
(0.003)

0.04
(0.01)

-240,201 480,406 480,424

M5΄ 65 
(7)

18
(3)

- - - 1314
(8)

1347
(8)

0.05
(0.01)

0.014
(0.002)

- - - - 0.05
(0.01)

-240,223 480,450 480,468

M6΄ 57 
(8)

15
(5)

-12
(5)

- - 1315
(9)

1355
(9)

0.04
(0.01)

0.011
(0.004)

0.009
(0.004)

-0.40
(0.10)

- - 0.03
(0.01)

-240,217 480,440 480,467

M7΄ 51 
(8)

9
(3)

- 19
(4)

- 1306
(8)

1345
(8)

0.04
(0.01)

0.006
(0.002)

- - 0.014
(0.003)

- 0.04
(0.01)

-240,197 480,400 480,427

M8΄ 50 
(8)

7
(4)

-12
(5)

19
(4)

- 1306
(9)

1352
(9)

0.04
(0.01)

0.005
(0.003)

0.009
(0.003)

-0.63
(0.10)

0.014
(0.003)

- 0.03
(0.01)

-240,188 480,384 480,420

2
uσ : direct additive genetic variance; 2

mσ : maternal genetic variance; umσ = direct-maternal genetic covariance; 2
cσ : maternal environmental variance; 2

fsσ : full-sib variance; 
2
eσ : residual variance; 2

pσ : phenotypic variance in g2; 2h : direct heritability; 2
mh : maternal heritability; umr : direct-maternal genetic correlation; 2c : maternal environmental 

variance as proportion of 2
pσ ; 2

TH : total heritability; logL: natural log-likelihood; AIC: Akaike Information Criterion; BIC: Bayesian Information Criterion;  standard errors in 
parenthesis
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Table 4.6 Genetic (rG) and phenotypic (rP) correlations between BWm or 
BWf and Δ or R.

rG rP

BWm BWf BWm BWf

Δ 0.34 (0.06) -0.20 (0.07) 0.54 (0.01) -0.46 (0.01)
R 0.11 (0.06) -0.32 (0.07) 0.45 (0.01) -0.55 (0.01)

standard errors in parenthesis
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5. Genotype (by sex) by environment interaction for body weight 
in broiler chicken

5.1 Summary
A  study  was  conducted  to  evaluate  the  effect  of  genotype  by  environment 

interaction (GEI) on body weight (BW) at 35 days of age for commercial broilers. A 
large dataset was used, consisting of 203,323 and 35,595 records obtained in high (H) 
and  low  (L)  hygiene  conditions,  respectively.  Bi-  and  quadra-variate  analyses  of 
environmental  and sex-environmental  specific  traits  were employed in an attempt to 
estimate genetic parameters.  BW in the two different environments was treated as two 
distinct traits (BWH, BWL) in the bi-variate analyses, while it was analyzed separately 
for each sex in each environment (BWH♂, BWH♀, BWL♂  and BWL♀) via quadra-variate 
analyses.  Variance  components  due  to  direct  additive  genetic,  maternal  genetic  and 
maternal  environmental  effects  were estimated  via  Restricted  Maximum Likelihood. 
Model  fit  was assessed by the conditional  Akaike Information Criterion (cAIC),  the 
Bayesian Information Criterion (BIC) and the Akaike Information Criterion (AIC). The 
best fitting models that successfully converged always included the direct genetic and 
the maternal environmental effects. During bivariate analysis, the direct heritability of 
BW was significantly higher in the L environment when contrasted to H (0.27 vs. 0.14), 
while the  maternal environmental variance accounted for 0.05 of the total phenotypic 
variance  in  both  environments.  During  the  quadravariate  approach,  the  direct 
heritabilities were estimated as high as 0.14, 0.19, 0.26 and 0.30 for BWH♂, BWH♀ BWL♂ 

and  BWL♀,  respectively,  whence  the  maternal  environmental  variance  accounted  for 
0.06-0.08 of the total phenotypic variance of the trait(s). The direct genetic correlations 
between the two environments ranged from 0.28 to 0.45,  indicating the presence of 
strong GEI.   The direct  genetic correlations  between the two sexes within the same 
environment (BWH♂-BWH♀ and BWL♂-BWL♀) were of high magnitude (0.81). Based on 
the current  findings,  no sex-specific  selection  policies  are  to  be pursued while  GEI 
should be appropriately accounted for during genetic evaluation.

5.2 Introduction
Differential  performance  of  specific  genotypes  under  changing  production 

conditions  implies  the presence of genotype  by environment  interaction  (GEI).  This 
interaction can reduce the accuracy of a model in predicting animal performance and 
may have undesirable effects on the estimation of breeding values (Case et al. 2010) 
leading  to  possible  re-ranking  of  individuals  between  environments.  As  a  result, 
selection in one environment will not necessarily lead to enhanced performance under 
different environmental conditions (Falconer and Mackay, 1996). Falconer and Mackay 
(1996)  have  suggested  a  method  to  quantify  the  importance  of  GEI  by  treating 
performances in two or more environments as different traits and estimating the genetic 
correlation  (rG)  between them via  a  multivariate  approach.  However,  it  is  not  clear 
which  value  of  rG implies  significant  GEI.  According  to  Robertson  (1959),  GEI  is 
important  if  rG between  the  environments  is  less  than  0.80.  Mulder  et  al.  (2006) 
suggested  that  when rG is  lower  than  0.70-0.50,  then  environment-specific  breeding 
programs are necessary for special adaptability in environments of importance.

With the worldwide distribution of stocks, a major poultry breeding objective is 
breeding  commercial  broilers  that  perform  adequately  in  a  wide  variety  of 
environmental  conditions.  The  capacity  of  single  genotypes  to  exhibit  a  range  of 
phenotypes  in  response  to  variation  in  the  environment  is  defined  as  phenotypic 
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plasticity (Fordyce, 2006). GEI might involve different nutritional (Havenstein et al., 
1994),  management  (N’Dri  et  al.,  2007),  climatic  (Cahaner  and  Leenstra,  1992; 
Leenstra  and  Cahaner,  1992;  Yalcin  et  al.,  1997,  Settar  et  al.,  1999)  or  hygiene 
conditions (Banos et al., 2006; Ye et al., 2006; Long et al., 2008). The latter conditions 
might have a dramatic impact on the performance of broilers, but there seems to be 
minimal  relevant  information  reported  in  the  literature,  at  least  from a  quantitative 
genetics point of view. The studies of Ye et al. (2006) and Long et al. (2008) were 
mainly  concerned  with  identifying  immune-related  genes  or  SNP  subsets  that  are 
associated  with  the  differential  performance  of  broilers  between  different  hygiene 
conditions. Given this lack of information the present study was conducted aiming at 
the  following  questions:  a)  do  the  hygiene  conditions  pose  significant  GEI  for  an 
economically important trait such as the body weight (BW) at 35 days of age in broilers 
and  b)  if  so,  are  sex-specific  breeding  policies  necessary  to  accommodate  this 
interaction?  In order to answer these questions we have used a large data set of BW 
obtained under  two different  hygiene  level  environments  and followed both bi-  and 
quadra-variate analyses.

5.3 Materials and method
5.3.1 Data description
Data on BW at 35 days of age were made available by Aviagen Ltd., regarding a 

commercial  line  of  broiler  chicken,  raised  in  either  a  high  (H)  or  low (L)  hygiene 
condition environment.  The high and low hygiene  conditions were representative  of 
selection  nucleus  and  low  hygiene  commercial  level  conditions  respectively. 
Information in both environments included sire, dam, age of sire and dam, hatch week, 
mating group and sex of each bird. Regarding the H environment, all broilers belonging 
to three weekly hatches were reared together. Potential parents were selected each week 
and allocated to mating groups. A mating group typically comprised approximately 8 
sires, each mated to roughly 10 dams in a nested structure for a standard number of 
hatch weeks. Progeny born in a particular hatch from a particular mating group came 
from contemporaneous parents and shared the same environment. Every second hatch 
week, 290 offspring on average were randomly selected out of the full-sib families and 
were raised in L environment.

Table  5.1  presents  aspects  of  the  dataset  and  the  pedigree  used.  The  dataset 
consisted of 203,323 (99,330 male and 103,993 female) and 35,595 (17,990 male and 
17,605 female) records in H and L environment, respectively. The pedigree included a 
total  of  241,010  animals,  of  which  980  sires  and  7,870  dams  with  progeny  in  H 
environment and 665 sires and 3,822 dams with offspring in L environment. All sires 
and dams with offspring in L environment also had offspring in H environment, thus 
providing  the  genetic  links  that  make  between-environment  analysis  possible.  Sires 
produced 4 to 605 offspring (average 207.47) of which 2 to 300 (average 101.36) male 
and 2 to 337 (average 106.88) female offspring, all raised in H. Additionally, 4 to 179 
(average 53.53) offspring per sire were raised in L environment. Dams produced 4 to 88 
(average 25.84) offspring of which 2 to 49 (average 12.81) male and 2 to 52 (average 
13.48) female offspring, all raised in H. In addition, 4 to 30 (average 9.33) offspring per 
dam were raised in L environment. 
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5.3.2 Statistical analysis
Broilers in H were significantly (P<0.01) heavier compared to the L environment 

(average 2,329 g vs. 1,514 g). In addition, males were significantly heavier than females 
in both environments (average 2,470.2 g vs. 2,194.7 g in H and 1,591.4 g vs 1,433.9 g 
in  L).  Such  a  description  may  imply  the  need  of  treating  BW  either  as  an 
environmental-specific  or  even  as  a  sex  by  environment  specific  trait  leading  to 
bivariate and quadravariate analyses, respectively.  In both cases a number of models 
were fitted  including direct  genetic,  maternal  genetic  and/or maternal  environmental 
effects. However, models that simultaneously considered maternal genetic and maternal 
environmental effects suffered from convergence issues. Indeed, preliminary univariate 
analysis  of  BW in  the  L  environment  revealed  that  maternal  genetic  and  maternal 
environmental effects could not be sufficiently disentangled in the specific environment. 
This was probably due to the fact that the females in the L environment did not produce 
any offspring. Consequently, only four models were applied in both the bi- and quadra-
variate analyses. With regard to the fixed effect part of the models, preliminary analysis 
of variance showed that the statistically significant (P<0.05) fixed effects for all traits 
included hatch (275 and 122 weeks in H and L, respectively), sex (where appropriate), 
mating group (93 and 42 classes in H and L, respectively) and the age of the parents 
(four classes from 9 to 12 months). The above fixed effects were included in all models.

5.3.2.1 Bivariate analysis
Four  animal  models  were  considered.  Model  B1 was  a  purely  direct  additive 

model, while model B2 allowed for the inclusion of maternal environmental effects. A 
maternal genetic effect was incorporated in model B3 in addition to the direct additive 
genetic effects, assuming zero direct-maternal genetic covariance ( umσ ). Model B4 was 
as model B3, but with non-zero umσ . In matrix notation these models can be described as 
follows:
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with cov(u,m)=0   (B3)
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with  Aummu σ=),cov(    (B4), 

where subscript H (L) pertains to High (Low) hygiene conditions; yH(L) = nH(L)×1 vector 
of observations (nH(L)= number of records in H {L} = 203,323 {35,595}),  bH(L)= p×1 
vector of fixed effects (p = number of fixed effects classes in H {L}  = 374 {198} ), u 
H(L) = q×1 vector of direct additive genetic effects (q = number of additive effects = 
241,010), mH(L) = d×1 vector of maternal genetic effects (d = total number of females = 
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123,452), c H(L) = k×1 vector of maternal environmental effects (k=number of dams with 
offspring= 7,870), e H(L) = nH(L)×1 vector of residuals; XH(L), ZH(L), ΖmH(L) and ΖcH(L)  denote 
the incidence matrices relating the observations to the corresponding fixed and random 
effects;  A the additive relationship matrix.  The vector of direct and maternal genetic 
effects was assumed to follow the multivariate normal distribution:

[ ] ( )AG0mmuu LHLH ⊗+ ,~ 22 dq
T N ,

where  0N denotes  a  N×1 vector  of  0s,  ⊗  denotes  the Kronecker  product,  A is  the 
additive relationship matrix, 
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G

is the 4×4 (co)variance matrix of direct and maternal genetic effects, 2
H(L)uσ  denotes the 

direct genetic variance, LHuuσ  the direct genetic covariance, 2
H(L)mσ  the maternal genetic 

variance,  LHmmσ  the  maternal  genetic  covariance  and  H(L)H(L)muσ  the  direct-maternal 
genetic covariance. Maternal environmental effects for the two traits were assumed to 
follow the multivariate normal distribution: [ ] ( )kLH IC0cc ⊗,~ 2k

T N , where kI  is an 
identity matrix of order k, 
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C

is  the  2×2  (co)variance  matrix  between  maternal  environmental  effects, 2
H(L)cσ  the 

maternal environmental variance and LHccσ  the maternal environmental covariance. 

Finally,  residuals,  regarding  different  animals  (males-females),  were  assumed 
independent between the two traits: [ ] ( )nLH IR0ee ⊗,~ 2n

T N , where nI  is an identity 
matrix of order n and
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is the 2×2 residual (co)variance matrix, where 2
H(L)eσ  is the residual variance. 

5.3.2.2 Quadravariate analysis
Following the previous description, four animal models (Q1-Q4) were considered, 

for male and female body weight in H and L environments.  In matrix notation these 
models can be described as follows:
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with cov(u,m)=0   (Q3)
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with  Aummu σ=),cov(    (Q4), 

where subscript  H (L) pertains to high (low) hygiene conditions and subscript  1 (2) 
pertains to male (female) BW; yH1(2)=nH1(2)×1 vector of observations in H environment 
(nH1(2)= number of male {female} records in H environment =99,330 {103,993}; y(L)1(2) = 
nL1(2)×1 vector  of  observations  in  L environment  (nL1(2)  = number  of  male  {female} 
records in L environment =17,990 {17,605}); b H(L) = p H(L)×1 vector of fixed effects (p = 
number of fixed effects classes in H {L} environment = 374 {198}), u H(L) = q×1 vector 
of direct additive genetic effects (q = number of additive effects = 241,010), m H(L) = d×1 
vector  of  maternal  genetic  effects  (d = total  number  of  females  = 123,452),  c H(L)= 
kH(L)×1 vector of maternal environmental effects (kH(L) = number of dams with offspring 
in H {L} environment = 7,870 {3,822}),  e H(L) = nH(L)×1 vector of residuals; XH(L), Z H(L), 
ΖmH(L) and  ΖcH(L)  denote  the  incidence  matrices  relating  the  observations  to  the 
corresponding  fixed  and  random effects.  The  vector  of  direct  and  maternal  genetic 
effects  was  assumed  to  follow  the  multivariate  normal  distribution: 
[ ] ( )AG0mmmmuuuu

21212121 LLHHLLHH ⊗+ ,~ 44 dq
T N ,  where  0N denotes  a 

N×1 vector of 0s,  ⊗  denotes the Kronecker product,  A is  the additive  relationship 
matrix, 
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G

is the 8×8 (co)variance matrix of direct and maternal genetic effects,  2
)( 1(2)LuHσ  denotes 

the direct genetic variance,  2(1)1(2) )()( HuLLuHσ  the direct genetic covariance,  2
)( 1(2)LmHσ  the 

maternal  genetic  variance,  2(1)1(2) )()( HmLLmHσ  the  maternal  genetic  covariance  and 

1(2)1(2) )()( LmHLuHσ  the direct-maternal genetic covariance. Maternal environmental effects 
for the two traits were assumed to follow the multivariate normal distribution:

[ ] ( )kLLHH IC0cccc
2121

⊗,~ 4k
T N ,

where kI  is an identity matrix of order k, 
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is  the  4×4  (co)variance  matrix  between  maternal  environmental  effects, 2
)( 1(2)LcHσ  the 

maternal  environmental  variance  and  2(1)1(2) )()( HcLLcHσ  the  maternal  environmental 
covariance.  Finally,  residuals,  regarding  different  animals  (males-females),  were 
assumed  independent  between  the  two  traits:  [ ] ( )nLLHH IR0eeee
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⊗,~ 4n

T N , 
where nI  is an identity matrix of order n and
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is the 4×4 residual (co)variance matrix, where 2
)( 1(2)LeHσ  is the residual variance. 

All analyses were carried out by the ASREML software (Gilmour et al, 2009). 
Estimates  of  direct  ( 2h )  and  maternal  ( 2

mh )  heritability  as  well  as  maternal 
environmental effects ( 2c ) were calculated for each trait as ratios of estimates of direct 
additive  ( 2

uσ ),  maternal  genetic  ( 2
mσ )  and  maternal  environmental  ( 2

cσ )  variances, 
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respectively to phenotypic  variance  ( 2
pσ ).  The phenotypic  variance accounts  for the 

sum of all variance components, according to the model. The direct-maternal genetic 
correlation (rum) was computed as the ratio of the estimate of direct-maternal genetic 
covariance ( umσ )  to the product of the square roots of estimates of  2

uσ  and  2
mσ .  In 

addition, we follow Willham (1972) in calculating the total heritability ( 2
TH ) for BW as:

2

22
2 5.15.0

p

ummu
TH

σ
σσσ ++

= .

5.3.2.3 Model evaluation criteria
Model comparison was carried out via three model evaluation criteria: the Akaike 

Information Criterion (AIC; Akaike, 1973), the Bayesian Information Criterion (BIC; 
Schwarz,  1978) and the conditional  Akaike Information Criterion  (cAIC; Vaida and 
Blanchard,  2005).  The  AIC  gives  an  unbiased  estimator  of  the  Kullback-Leibler 
divergence of the current model from the true model. In addition, it can be shown that 
AIC chooses the model with the best short-term predictive ability (Stone, 1977). When 
a true model exists and lies within the range of models entertained in the analysis, the 
BIC (Schwarz, 1978) is consistent, in the sense that the true model will be selected as 
more data accrue. All model evaluation criteria are based upon the computation of the 
deviance  (D):  D= Lyp log2))ˆ|(log(2 −=− θ ,  where  θ denotes  the  px1 vector  of the 
model parameters and )ˆ|( θyp  the likelihood of the data y evaluated at the maximum 
likelihood estimateθˆ .  Akaike (1973) showed that the correct term for penalizing the 
deviance  is  twice  the  number  of  the  model  parameters  p.  Thus,  he  defined 

pLAIC i 2log2 +−=  as  the  model  evaluation  criterion.  A  Bayesian  argument  was 
utilized by  Schwarz (1978) to prove that the appropriate penalization term is  plog (n) 
thus defining: npLBIC i loglog2 +−= , where n is the number of data observations.

However, the determination of the number of the model parameters is non-trivial 
when random effects  are of interest  and are being estimated using methods such as 
BLUP. For  such cases  the  AIC is  shown in  Crainiceanu  and Ruppert  (2004) to  be 
asymptotically  biased. In  addition,  Greven  and Kneib  (2010)  showed  that  in  linear 
mixed models AIC is a biased estimator of the Akaike information due to the non-open 
parameter space and the lack of independence between observations. The cAIC defined 
by Vaida and Blanchard (2005) as  ρ2log2 +−= iLcAIC  is asymptotically unbiased. 
Notice that ρ, the effective degrees of freedom (Hodges and Sargent, 2001), is given by 
the trace of the hat-matrix H which in the case of a simple additive animal model can be 
expressed as: 
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where  λ= 2
eσ / 2

uσ . Minimizing the above criteria over a set of possible models can be 
seen as minimizing the average distance of an approximating model to the underlying 
truth (Greven and Kneib, 2010). Thus, the model with the smallest cAIC value is to be 
preferred. 
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5.4 Results
5.4.1 Bivariate analyses
Table 5.2 summarizes the estimated variance components and genetic parameters 

of both traits, along with the likelihoods and the various model evaluation criteria (AIC, 
BIC and cAIC) for  the  four  bivariate  models.  Regarding  the H environment,  direct 
heritability ranged from 0.14 to 0.34, while maternal heritability was between 0.06 and 
0.11, depending on the model. Furthermore, maternal environmental variance accounted 
for 0.05 of the total  phenotypic variance of the trait.  With regard to L environment, 
direct heritability varied from 0.27 to 0.46, while maternal heritability ranged from 0.03 
to 0.06, depending on the model. Here, maternal environmental variance also accounted 
for 0.05 of the total phenotypic variance. A negative direct-maternal genetic correlation 
was detected in the H environment (-0.51) that was significantly higher (P<0.05) than in 
the L environment (-0.27).  According to all model evaluation criteria, the best model 
included direct genetic effects and maternal environmental effects (model B2). In this 
model,  direct  heritability  was  estimated  as  high  as  0.14  and  0.27  in  H  and  L, 
respectively. In both environments, maternal environmental variance accounted for 0.05 
of the total phenotypic variance.  

Genetic and phenotypic correlations between the two environments are presented 
in Table 5.3. Under a purely additive animal model, the additive genetic and phenotypic 
correlations were estimated as high as 0.48 and 0.19, respectively. The additive genetic 
correlation varied considerably between models with values ranging from 0.34 to 0.48, 
while the phenotypic correlation ranged from 0.10 to 0.19. The correlations between the 
maternal  genetic  effects  ranged slightly  from 0.77 to  0.79.  According  to  model  B2, 
which  was  proposed  by  all  evaluation  criteria,  the  additive  genetic  correlation  was 
estimated  0.35,  indicating  the  presence  of  strong  GEI.  The  respective  phenotypic 
estimate  was  much  lower  (0.10),  as  the  residual  correlation  between  the  two 
environments was set to zero, because residuals regarded different animals.  

5.4.2 Quadravariate analysis
Table 5.4 summarizes the estimated variance components and genetic parameters 

of the four traits, along with the log-likelihoods and the model evaluation criteria (AIC, 
BIC and cAIC) for the three quadravariate models of analysis that converged.  Direct 
heritability ranged from 0.14 to 0.40 for BWH♂, while it was slightly higher for BWH♀ 

ranging from 0.19 to 0.43. Given the standard errors, however, no sex differences were 
ascertained  (P>0.05).  Furthermore,  results were consistent with those obtained in the 
bivariate  analysis,  with  direct  heritability  being  always  higher  in  L  than  in  H 
environment.  Maternal heritability was estimated as high as 0.10 for BWH♂ and 0.09 for 
BWH♀, while it was 0.04 and 0.02 for BWL♂ and BWL♀, respectively. During model Q2 

that best fitted our data, direct heritability was estimated to be 0.14 and 0.19 for BWH♂ 

and BWH♀, respectively. Here, maternal environmental variance accounted for 0.08 and 
0.07 of the total phenotypic variance of BWH♂ and BWH♀, respectively. In addition, no 
differences were detected in the maternal environmental variance between the two sexes 
in L environment (c2=0.06 for both BWL♂ and BWL♀).

The  genetic  and phenotypic  correlations  are  given  in  Table  5.5.  The  additive 
genetic correlations (ru) between the sexes in H environment were high, ranging from 
0.81 to 0.92, and this was also the case for the L environment. Likewise, the estimates 
of  the  maternal  genetic  correlations  between  BWH♂ and  BWH♀ (0.97)  and  between 
BWL♂ and BWL♀ (0.92) were also high. Notably all  the additive genetic correlations 
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across sexes, between the environments were low ranging from 0.24 (BWH♂-BWL♀) to 
0.50 (BWH♂-BWL♂). As in the bivariate case, the residual correlation between the four 
traits was set to zero thus leading to low phenotypic correlations across the traits. Under 
model  Q2, the direct genetic correlation between sexes in the same environment  were 
0.81 and the correlations between the maternal environmental effects were higher (0.94 
and  0.87  between  BWH♂-BWH♀ and  BWL♂-BWL♀,  respectively).  Conversely,  the 
estimates of the same sex in the two environments were significantly smaller (e.g. 0.45 
for BWH♂-BWL♂  and 0.31 for BWH♀-BWL). 

5.5 Discussion 
This  appears  to  be  the  first  study  reporting  significant  GEI  for  an  important 

economic trait such as body weight arising from different hygiene conditions. Results of 
the  present  study have  shown animals'  average  performance  i.e.  body weight  to  be 
severely  affected  by  the  hygiene  level  conditions,  with  chicken  raised  in  H  being 
significant heavier than their L counter mates. Apart from the mean trait, performance 
was more variable in the L vs. the H environment, manifested in terms of phenotypic, 
additive genetic variance and direct heritability estimates. Raising broilers under low 
hygiene level conditions may pose a significantly stressful environment. Environments 
of this kind are reported to increase both the phenotypic and the genetic variation in a 
number of quantitative characters (Barker and Krebs, 1995; Zhivotovsky et al, 1996; 
Sgro  and  Hoffman,  1998), a  finding  that  has  both  evolutionary  and  breeding 
implications. From an evolutionary point of view, increased genetic variation translates 
to increased adaptive potential and thereby survival probability in adverse environments 
(Imascheva et al., 1998). Following the old breeder's dogma that “the character required 
is best selected for under environmental conditions which favor its fullest expression” 
i.e.  exhibiting  highest  heritability,  selection  should  mainly  practiced  in  the  L 
environment. This may be valid, however, only when the genetic correlation between 
the  two  environments  is  high  (rG≥0.8)  i.e.  when  the  GEI  is  of  no  or  very  little 
importance. Given the low (rG~0.40) genetic correlation across the two environments 
estimated  herein,  there  seems  to  be  significant  GEI  for  the  trait  that  should  be 
appropriately accounted for during estimation of breeding values. 

Although  first  demonstrated  for  hygiene  conditions  here,  GEI  is  repeatedly 
reported  as  being  of  importance  in  many  aspects  (or  variety)  of  environmental 
conditions and traits, in broilers. In agreement with our results, Banos et al. (2006) have 
reported higher heritability estimates of BW35 in commercial than in selection hygiene 
environments (0.32 vs. 0.22).  In a cross between two genetically different broiler dam 
lines,  raised in cold and normal  temperatures,  Pakdel et  al.  (2005) obtained   higher 
heritability estimates in the normal than in the cold conditions (0.50 vs. 0.42). Notably, 
in  accordance  with  our  results,  most  of  the  other  traits  displayed  higher  direct 
heritabilities in the harsh (cold) than in the normal environment. In addition, Pakdel et 
al.  (2005)  have  also  estimated  a  low (0.29)  genetic  correlation  for  BW in  broilers 
between  cold  and  normal  temperature  conditions.  In  contrast  to  our  findings, 
Zerehdaran et al. (2005) reported genetic correlations ranging from 0.78 to 0.89 for BW 
at three different ages and two distinct housing systems. High genetic correlations (0.74 
to 0.98) are also reported by N’Dri et al. (2007) for BW at 8 weeks of age in slow-
growing chicken between three environments ranged from. The controversial literature 
data together with our findings suggest that the effect of harsh conditions on genetic 
variability might be trait-specific and depends on the kinds and levels of the extreme 
environmental conditions. Thus, generalizations about the behavior of genetic variation 
under extreme conditions should be avoided. Differences in estimates throughout the 
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studies may reflect differences in genotype(s) used (crosses, fast or slow growing lines) 
as well as environmental conditions (housing system, temperature). 

Finally, we have tested the hypothesis that GEI might be sex-specific. To do so, 
we have applied a number of animal models and a quadravariate approach. Here, body 
weight  per  sex  and environment  was  treated  as  distinct  traits  assuming  no  residual 
correlation  between.  During this  approach,  direct  genetic  correlations  between sexes 
both  within  as  well  as  across  the  two  environments  were  as  minimum  as  0.81. 
Furthermore,  no  difference  between  sex  estimates,  whether  heritabilities  or  genetic 
correlations, were established. All the above imply that GEI is not sex related and thus 
no  sex  specific  selection  strategies  should  be  envisaged.  This  finding  was  further 
supported by analysis of variance (ANOVA) where sex (S), environment (E) and the 
sex by environment (SxE) term were treated as fixed effects. During ANOVA, the SxE 
term explained only 2.7% of the trait variance (results not shown). 

In conclusion, a strong GEI  interaction for BW due to hygiene conditions was 
revealed suggesting that  there is sufficient phenotypic  plasticity for the trait  under a 
range of environmental conditions (when the two hygiene levels are considered as two 
extremes). Obtaining records in both environments represents an important information 
source regardless of the breeding goal i.e. breeding for the high (selection nucleus), low 
(commercial) or a range of hygiene conditions falling within the two extremes.  When 
omitted, the loss of genetic gain due to GEI is expected to be of appreciable magnitude. 
Simulation studies (Mulder and Bijma, 2005) have shown that progeny-testing rather 
than sib-testing schemes are preferable when there are low to moderate heritabilities 
(h2≤0.30),  relatively  short  generation  intervals  of  progeny-tested  sires  (≤1.7)  and 
moderate to severe GEI  (ru≤0.80). It has been further shown (Mulder and Bijma, 2005) 
that increasing the number of progeny per sire, the proportion of selected sires and the 
population size in the harsh environment, minimizes the loss in genetic gain due to GEI. 
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Tables and Figures

Table 5.1 Description of the data set in a high (H) and a low (L) hygiene environment 
and the pedigree used.
Environment H L
No. of total animals 205,415 40,082
No. of animals with records 203,323 35,595
No. of males with records 99,330 17,990
No. of females with records 103,993 17,605
No. of sires 980 665†
No. of dams 7,870 3,822†
† common to both environments
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Table  5.2 Estimates of variance components, genetic parameters, log-likelihoods and model selection criteria, under four bivariate models for the body weight (BW) of broiler 
chicken at 35 days of age in a high (H) and a low (L) hygiene environment.

Model Env 2
uσ 2

mσ umσ 2
cσ 2

fsσ 2
eσ 2

pσ 2h 2
mh

2
p

um

σ
σ umr 2c

2

2

p

fs

σ
σ 2

TH logL AIC BIC cAIC ρ

B1

H 23,766
(600)

- - - - 46,855
 (400)

70,621
(400)

0.34
(0.01)

- - - - - 0.34
(0.01)

-1,438,690 2,877,382 2,877,392 2,932,999 27,809

L 40,661
(600)

- - - - 47,231
 (800)

87,893
(800)

0.46
(0.02)

- - - - - 0.46
(0.02)

B2

H 9,493
(500)

- - 3,020
(200)

- 53,452
(300)

65,965
(300)

0.14
(0.01)

- - - 0.05
(0.01)

- 0.14
(0.01)

-1,438,317 2,876,638 2,876,659 2,904,981 14,172

L 22,302
(1,100)

- - 4,532
(500)

- 55,829
(800)

82,662
(800)

0.27
(0.02)

- - - 0.05
(0.01)

- 0.27
(0.02)

B3

H 10,700
(600)

3,941
(600)

- - - 52,923
(300)

67,563
(300)

0.16
(0.01)

0.06
(0.01)

- - - - 0.19
(0.01)

-1,438,382 2,876,768 2,876,789 2,909,536 16,384

L 31,871
(1,200)

2,450
(700)

- - - 51,504
(900)

85,825
(900)

0.37
(0.02)

0.03
(0.01)

- - - - 0.39
(0.02)

B4

H 13,636
(900)

7,375
(600)

-5,086
(500)

- - 51,485
(300)

67,410
(300)

0.20
(0.01)

0.11
(0.01)

0.08
(0.01)

-0.51
(0.03)

- - 0.14
(0.01)

-1,438,321 2,876,648 2,876,679 2,914,919 19,135

L 34,068
(1,400)

4,880
(900)

-3,516
(900)

- - 50,421
(900)

85,852
(900)

0.40
(0.02)

0.06
(0.01)

0.04
(0.01)

-0.27
(0.06)

- - 0.36
(0.02)

2
uσ : direct additive genetic variance; 2

mσ : maternal genetic variance; umσ = direct-maternal genetic covariance; 2
cσ : maternal environmental variance; 2

eσ : residual variance; 2
pσ : 

phenotypic variance in g2; 2h : direct heritability; 2
mh : maternal heritability; umr : direct-maternal genetic correlation; 2c : maternal environmental variance as proportion of 2

pσ ; 2
TH : 

total heritability; logL: natural log-likelihood; AIC: Akaike Information Criterion; BIC: Bayesian Information Criterion; cAIC: conditional Akaike Information Criterion; ρ: effective 
degrees of freedom;  standard errors in parenthesis; 
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Table 5.3 Phenotypic correlation coefficient (rp),  direct genetic correlation coefficient 
(ru),  maternal genetic correlation coefficient (rm) and  correlation coefficients between 
maternal environmental effects (rc)  for body weights (BW) of broilers at 35 days of age 
in a high and a low hygiene environment, under four bivariate models of analysis.

standard errors in parenthesis

Models ru rm rc rfs rp

B1 0.48 (0.02) - - - 0.19 (0.01)
B2 0.35 (0.05) - 0.48 (0.05) - 0.10 (0.01)
B3 0.34 (0.05) 0.77 (0.09) - - 0.11 (0.01)
B4 0.37 (0.05) 0.79 (0.08) - - 0.12 (0.01)
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Table 5.4 Estimates of variance components, genetic parameters, log-likelihoods and model selection criteria under three quadravariate models for 
the body weight (BW) of male (♂) and female (♀) broiler chicken at 35 days of age in a high (H) and a low (L) hygiene environment. 
Model Trait 2

uσ 2
mσ 2

cσ 2
fsσ 2

eσ 2
pσ 2h 2

mh 2c
2

2

p

fs

σ
σ 2

TH logL AIC BIC cAIC ρ

Q1 ♂H 19,929
(600)

- - - 30,233
(300)

50,161
(300)

0.40
(0.01)

- - - 0.40
(0.01)

-1,394,618 2,789,244 2,789,261 2,818,924 14,842

♀H 19,974
(600)

- - - 26,372
(300)

46,346
(300)

0.43
(0.01)

- - - 0.43
(0.01)

♂L 37,257
(1,100)

- - - 44,233
(900)

81,490
(900)

0.46
(0.02)

- - - 0.46
(0.02)

♀L 40,527
(1,200)

- - - 42,225
(950)

82,752
(950)

0.49
(0.02)

- - - 0.49
(0.02)

Q2 ♂H 6,681
(500)

- 3,643
(200)

- 35,980
(300)

46,304
(300)

0.14
(0.01)

- 0.08
(0.01)

- 0.14
(0.01)

-1,393,795 2,787,606 2,787,640 2,802,842 7,622

♀H 7,927
(500)

- 2,911
(150)

- 31,721
(300)

42,559
(300)

0.19
(0.01)

- 0.07
(0.01)

- 0.19
(0.01)

♂L 20,210
(1,100)

- 4,845
(600)

- 51,869
(900)

76,924
(900)

0.26
(0.02)

- 0.06
(0.01)

- 0.26
(0.02)

♀L 23,391
(1,100)

- 4,437
(600)

- 50,105
(900)

77,933
(900)

0.30
(0.02)

- 0.06
(0.01)

- 0.30
(0.02)

Q3

♂H 9,034
(600)

5,252
(200)

- - 36,765
(300)

51,051
(300)

0.18
(0.01)

0.10
(0.01)

- - 0.23
(0.01)

-1,393,900 2,787,816 2,787,850 2,806,213 9,203

♀H 9,055
(600)

4,180
(200)

- - 31,736
(300)

45,371
(300)

0.21
(0.01)

0.09
(0.01)

- - 0.25
(0.01)

♂L 28,386
(1,200)

3,341
(700)

- - 48,395
(900)

80,121
(900)

0.35
(0.03)

0.04
(0.01)

- - 0.37
(0.03)

♀L 32,644
(1,300)

2,003
(700)

- - 46,123
(900)

80,770
(900)

0.40
(0.03)

0.02
(0.01)

- - 0.41
(0.03)

2
uσ : direct additive genetic variance; 2

mσ : maternal genetic variance; 2
cσ : maternal environmental variance; 2

eσ : residual variance; 2
pσ : phenotypic 

variance in g2;  2h : direct heritability;  2
mh : maternal heritability;  2c : maternal environmental variance as proportion of  2

pσ ;  2
TH : total heritability; 

logL:  natural  log-likelihood;  AIC:  Akaike  Information  Criterion;  BIC:  Bayesian  Information  Criterion; cAIC:  conditional  Akaike  Information 
Criterion; ρ: effective degrees of freedom;  standard errors in parenthesis;
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Table 5.5  Phenotypic correlation coefficient  (rp),  direct genetic correlation coefficient  (ru), 
maternal genetic correlation coefficient  (rm)  and  correlation coefficients between maternal 
environmental effects (rc) , for body weights of male (♂) and female (♀) broiler chicken at 35 
days  of  age,  in  a high (H) and a  low (L)  hygiene  environment,  under  three  quadravariate 
models of analysis.
Models Correlation ♂H, ♀H ♂L, ♀L ♂H, ♂L ♀H, ♀L ♂H, ♀L ♂L, ♀H

Q1 ru 0.92 (0.01) 0.92 (0.01) 0.50 (0.03) 0.43 (0.03) 0.41 (0.03) 0.43 (0.03)
Q2 0.81 (0.02) 0.81 (0.02) 0.45 (0.05) 0.31 (0.05) 0.28 (0.06) 0.33 (0.05)
Q3 0.85 (0.02) 0.92 (0.02) 0.39 (0.05) 0.25 (0.05) 0.24 (0.05) 0.30 (0.05)
Q3 rm 0.97 (0.01) 0.92 (0.06) 0.71 (0.06) 0.73 (0.08) 0.75 (0.09) 0.70 (0.07)
Q2 rc 0.94 (0.02) 0.87 (0.07) 0.42 (0.06) 0.40 (0.07) 0.47 (0.07) 0.45 (0.06)
Q1 rp 0.38 (0.01) 0.44 (0.02) 0.21 (0.01) 0.19 (0.01) 0.18 (0.01) 0.19 (0.01)
Q2 0.20 (0.01) 0.30 (0.02) 0.12 (0.01) 0.10 (0.01) 0.10 (0.01) 0.10 (0.01)
Q3 0.26 (0.01) 0.38 (0.02) 0.14 (0.01) 0.11 (0.01) 0.10 (0.01) 0.12 (0.01)
standard errors in parenthesis
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6. Concluding remarks
6.1 Statistical methodology
The aim of quantitative genetics  is  to separate variances between animals  into 

causal components due to different modes of action. Typical modes of action include 
additive,  maternal  (genetic  or  environmental)  as well  as  non-additive genetic  effects 
(e.g.  dominance,  epistatic)  (Palucci  et  al.,  2007).  Extensions  may  also  comprise  of 
parent-of-origin  i.e. imprinting effects (e.g. Essl and Voith, 2002), mitochondrial  i.e. 
cytoplasmatic (e.g. Schutz et al., 1992) and sex-linked inheritance (Fairbairn and Roff, 
2006). Apart from genetic, social effects may also be present for socially affected traits 
(Muir and Schinkel, 2002). In cases where non genetic relationships between direct and 
maternal effects are present, the so called maternal animal model  (Quaas and Pollak, 
1980;  Henderson,  1988)  has  been  proposed.  Extensions  here  include  correlation 
between maternal environmental effects of related dams (Quintanilla et al., 1999). In 
conclusion,  there  is  a  tendency  towards  using  more  complicated  and  sophisticated 
models in an effort to capture all possible sources of variation.

Whatever the mode of action, interactions between the various effects may also be 
of (some) importance. This interaction is quantified via appropriate statistical measures 
like  the  covariance.  Existent  theory  presumes  various  assumptions  regarding  the 
(co)variance among the random effects. Real data however, may significantly violate 
assumptions of this kind. Apart  from the usual covariance between the additive and 
maternal effects that seems to be successfully modeled, failure to account for existent 
covariances  may  affect  parameter  estimation  during  VCE and BLUP.  For  instance, 
chapter 2 has demonstrated that the common assumption of independence between the 
additive genetic effects and the maternal environmental effects does not always hold. 
Whatever  the  sources  of  such  covariance(s),  results  imply  that  a  more  thorough 
examination  of  the  data  should  be  pursued,  attempting  to  reveal  possibly  'hidden' 
covariance  structure(s).  In  our  case,  this  was  only  feasible  by  employment  of 
WinBUGS, a salient feature that should be appreciably acknowledged. Unfortunately, 
the inability to analyze large data sets limits the application of this software, reserving it 
an  explanatory  tool  of  latent  structures  on  handy  sub-sets  of  the  original  data.  A 
promising alternative has emerged in the form of INLA, which certainly requires further 
development  and  testing.  Regardless  of  the  scholar  (frequentist  or  Bayesian),  there 
seems to be a need for more flexible algorithms and software(s) being capable to fit 
more  sophisticated  (co)variance  structures.  Although  the  Moore's  law  relates 
computation  efficiency to  hardware  advances,  the  remarkable  present  computational 
efficiency should be mostly attributed to improvement(s) in algorithms.  

Statistics has traditionally been the mentor of Animal Breeding and shall continue 
to  do  so.  Advances  attained  there  should  be  quickly  and  efficiently  transferred  to 
Animal Breeding and this can be accomplished only via qualified breeders with a good 
background  in  statistics.  The  prevailing  view  that  molecular  genetics  would  solve 
several problems in animal breeding has gradually lost ground (Eisen, 2008). With the 
advent of GS, the need of scientists combining knowledge of molecular genetics and 
statistical methods becomes even more imperative.

6.2 Biological aspects
Results obtained herein have proved body weight (BW) a trait with salient biolo-

gical features: 
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a) A number of studies (e.g. Muir et al., 2008) have shown that commercial pure 
lines display significant absence of rare alleles i.e. lower genetic diversity compared to 
non commercial chickens. The levels of additive genetic variance estimated herein do 
not fully comply with such results since a moderate heritability for the trait was estim-
ated. Despite the intense levels of selection, the closed populations and the industry con-
solidation, there are no significant signs of genetic erosion due to selection, at least in 
the population under study, ensuring future genetic progress. In contrast to what is gen-
erally believed, nucleotide polymorphism and genome analysis show that past artificial 
selection  has  not substantially reduced the genetic  variation of the domestic chicken 
genome when compared to its wild ancestor, the red jungle fowl (International Chicken 
Polymorphism Map Consortium, 2004; Sawai et al., 2010). New mutations may provide 
the observed genetic variability and contribute to the lack of a perceived selection limit 
for growth and reproduction traits (Cahaner et al., 1996). Although no selection limits 
are in sight, side effects from selection for enhanced BW are already observed in the 
species. These include infertility, increased number of defective eggs, higher mortality, 
leg (e.g. tibial dyschondroplasia) and heart disorders and ascites (Rauw et al., 1998). To 
soften the impact, a more holistic approach is currently being practiced comprising of 
various selection criteria.

b) As in most livestock species, BW in broilers is under the genetic control of 
both additive and maternal genetic effects. The two effects are negatively correlated so 
that selection for increased phenotypic performance will be ablated by an amount that 
equals to the direct-genetic covariance (Willham, 1972). This negative correlation is the 
result of the pleiotropic action of genes (antagonistic pleiotropy; Roff, 2002). Its role is 
of tremendous importance for maintaining genetic variance and preventing the gradual 
shift towards higher weights. 

c) BW is a trait with significant phenotypic plasticity and this was observed under 
environments  which reflect  differentiated  rearing  conditions  with regard  to  hygiene. 
Although the two environments studied here do not represent natural habitats, rearing 
birds under extreme conditions always pose a real challenge for these organisms. Under 
challenging (low) hygiene conditions, birds exhibit higher phenotypic and most import-
antly genetic variation, in full accordance with their living free relatives. 

All  the  above findings  teach  us  a  valuable  lesson:  apart  from implications  of 
artificial selection, animals at our disposal obey first and above all the rules of natural 
selection and evolution. A  better understanding of these rules is necessary not only for 
exploring  strategies  for  further  improvement  but  also for  recognizing  the  biological 
limits of our genetic material. Species and traits evolve and so does animal breeding. 
New developments in genomics have recently made possible the application of GS. The 
method has major advantages: it allows for early selection (reduction of the generation 
interval)  and is independent  on sex-linked expression and/or  family structures.  Most 
importantly, through the availability of high density SNP chips (Groenen et al. 2011) it 
has gained increased accuracy. The latter chips are used for parental genotyping which 
is then combined with the use of imputation of progeny genotypes obtained from low 
density chips in attempts to reduce the “phase” problem. Current statistical approaches 
are  focused  on  additive  genetic  effects;  dominance  and  epistatic  effects  require 
additional exploration. The focus is selection at younger ages and for specific traits such 
as feed efficiency,  disease resistance,  robustness and so forth,  which are difficult  to 
improve via traditional methods. The first results using 30-K SNP chips were obtained 
from a commercial line used for training, validation and selection. They have shown 
improved accuracy of prediction  at  a young age and therefore resulted in  increased 
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genetic  gain(s). The key challenge to adopting this  methodology is  the high density 
genotyping cost (around 100-250 Euros per bird; Avendano et al., 2010) but GS must 
prove its advantages over traditional methods including cost benefits (Preisinger, 2011). 

Throughout this thesis it has become profound that increasingly complex models 
are  eagerly  tested  as  better  approximations  to  reality.  Bayesian  and  REML-based 
methods  can  certainly  cooperate  in  this  task unraveling  existent  data  structures  and 
providing  effective  estimates  of  the  parameters  in  question.  But  how  can  all  these 
models be effectively evaluated? Certainly,  cAIC which was introduced in this thesis 
can be of great assistance. Towards this direction, further simulation studies should be 
conducted in order to investigate the impact of different pedigree structures as well as 
the  existence  of  covariances  between  the  random  effects  on  the  estimation  of  the 
effective degrees of freedom. Reaching an end and always questions and necessities 
arise. Can the antagonism between direct and maternal genetic effects generate novel 
variation having thus an important role towards the maintenance of variation as well as 
the  evolution  of  broilers’  body weight?  In  this  thesis  a  trend  of  differential  direct-
maternal genetic correlation between the sexes was revealed for body weight of broilers 
at 35 days of age, while no differences between genders were detected at 7 days of age. 
Could this finding be an indication of a mechanism involved in the sexual dimorphism 
of chicken? Statistical analysis is always dependent on the available data structures. In 
order to have a clearer image, body weights measured at least at three different ages 
from 7 to 35 days should be appropriate to unveil via longitudinal models of analysis an 
aspect  of  this  phenomenon.  Genomic  data  could  also  be  of  assistance  towards  this 
direction to unlock the mechanisms involved. A second finding of this thesis was the 
existence of strong genotype by hygiene environment interaction for the respective trait 
of importance (BW). Although, climatic,  hygiene or nutritional conditions have been 
reported in the established literature to be a source for GEI, almost never have all (or 
some  of)  these  conditions  been  tested  simultaneously.  Thus,  measurement  of  a 
combination  of  environmental  conditions  would  provide  a  more  appropriate 
approximation  to  real  extreme  environments  of  raising  broilers  and  would  assist  in 
describing  the  pattern  of  phenotypic  expression  of  genotypes  across  a  range  of 
environments  through  a  norm of  reaction.  Nowadays,  although  the  body  weight  of 
boilers remains the most important economical trait for the particular industry, selection 
of  an  increasingly  large  number  of  traits  has  become  the  aim  of  animal  breeding 
schemes. Feed conversion rate, hen housed production, breast percentage in carcass are 
only a few traits that are in the scope. Thus, it would be of extreme interest a dataset 
regarding more traits and via multivariate analysis to estimate among others the genetic 
and phenotypic correlations between them. 
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APPENDIX
Codes for functions in ASREML, R and WinBUGS

Simulation for chapter 2 via R
tag<-c(1:2330) #individuals in pedigree
#parents given externally 
read.table(file="sire.txt",header=TRUE)
read.table(file="dam.txt",header=TRUE)
read.table(file="c2.txt",header=TRUE) #connecting dams-offspring for the c2 effects 
n<-2330   #total number of individuals in the pedigree
f<-90   #number of parents
d<-f+1
μ<-c(rep(10,2330)) #fixed effect     
#random effects
s2u<-7
su<-sqrt(s2u)
s2c<-3
sc<-sqrt(s2c)
s2e<-32
se<-sqrt(s2e)
r<- -0.80
s2p<-s2u+s2c+s2e
h2<-s2u/s2p
c2<-s2c/s2p
N<-30  #number of iterations
#matrices for saving samples
u.hat<-matrix(0,N,n)
c.hat<-matrix(0,N,n)
e.hat<-matrix(0,N,n)
p.hat<-matrix(0,N,n)
s2u.hat<-matrix(0,N,1)
s2c.hat<-matrix(0,N,1)
s2e.hat<-matrix(0,N,1)
s2p.hat<-matrix(0,N,1)
h2.hat<-matrix(0,N,1)
c2.hat<-matrix(0,N,1)
start <- Sys.time() #init time
for (i in 1:N) 
{#c2 effects
c1<-rnorm(f-20,0,1)*sc #distribution
c0<-c(rep(0,90)) #0 c2 for parents
c<-c(c0,c1[91:2330]) #joint c2 of parents and offspring
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#breeding values simulation
u1<-rnorm(f,0,su) #breeding values of parents
mu<-(sqrt(0.5*s2u)/sc)*r*c #mean of the offspring bvs
ms<-rnorm((n-f),mu,sqrt((1-r^2)*0.5*s2u)) #mendelian sampling for offspring bvs
u2<-1/2*(u1[sire[d:n]]+u1[dam[d:n]])+ms #breeding values of offspring
u<-c(u1,u2) #breeding values joint
e<-rnorm(n,0,1)*se #residuals
y<-μ+u+c+e #phenotypes
#matrices filled with generated values
u.hat[i,]<-u
c.hat[i,]<-c
e.hat[i,]<-e
p.hat[i,]<-y
s2u.hat[i,]<-var(u)
s2c.hat[i,]<-var(c)
s2e.hat[i,]<-var(e)
s2p.hat[i,]<-var(y)
h2.hat[i,]<-var(u)/var(y)
c2.hat[i,]<-var(c)/var(y)}
Sys.time() - start #count time
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WinBUGS code for the simulated data (chapter 2)
model

{
## Phenotypic values
for(i in 1 : n) {y[i] ~ dnorm(mu[i], tau2e)

mu[i] <- alpha + beta.sex[sex[i]] + beta.hatch[hatch[i]] + [id[i]]+beta.mat[mat[i]] }
## Location priors
alpha ~ dnorm (0, 0.0001)    
for(j in 1 :2) { beta.sex[j] ~ dnorm (0, 0.0001) }
beta.hatch[42]<-0
for(j in 1 :41) { beta.hatch[j] ~ dnorm (0, 0.0001) }
## Maternal environmental effects
beta.mat[75]<-0
for(k in 1 :74) { beta.mat[k] ~ dnorm (0, tau2c) }
## Additive genetic values
u[2457]<-0
for(k in 1 :137) { u[id[k]] ~ dnorm (pu[id[k]], tau2a[id[k]])
pu[id[k]] <- 0.5*(u[fid[k]]+u[mid[k]])
tau2a[id[k]]<- winv[id[k]]*tau2u }
for(k in 138 :2456)  { u[id[k]] ~ dnorm (pu[id[k]], tau2a[id[k]])

pu[id[k]] <- 0.5*(u[fid[k]]+u[mid[k]]) + corr * beta.mat[mat[k]] * (tau2c/tau2u) 
tau2a[id[k]]<- winv[id[k]]*tau2u * (1 - corr * corr) }
## Variance priors
tau2e <- 1 / sigma2e
sigma2e ~ dgamma(0.001, 0.001)
tau2u <- 1 / sigma2u
sigma2u <-  sigmau * sigmau    
sigmau ~ dunif (0,100)
tau2c <- 1 / sigma2c
sigma2c ~ dgamma(0.001, 0.001)
corr  ~ dunif (-1,1)
cov <- corr * (sqrt(sigma2c)) * sigmau
## Heritability
sigma2p <- sigma2u + sigma2c + cov + sigma2e
h2 <- sigma2u / sigma2p
c2 <- sigma2c / sigma2p
covar <- cov / sigma2p
}

Inits list( ## Means  
alpha = 0, beta.sex = c(0,0), 
## Variances
sigma2e = 1, sigma2c = 1, sigmau = 1)
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ASREML code for the sex specific GEI model Q2 (chapter 5)
Genotype (by sex) by environment interaction
  tag !P
  sire !P
  dam !P
  farm !I 5
  year !I 6
  season !I 4
  age !I 4 
  sexenv !I 4
  hatch !I 276
  bw
ge.ped !ALPHA !SKIP 1 
ge.dat !SKIP 1 !MAXIT 20 !EXTRA 2 !CONTINUE
bw ~ at(env,1).(farm year season age season.year farm.year) at(env,2).(hatch age) 
         !r sexenv.tag sexenv.ide(dam) 
4 1 2
99330 !S2=0.7
103993 !S2=0.6
17990 !S2=0.5
17605 !S2=0.4
sexenv.tag 2
4 0 US !GP
0.2
0.01 0.3
0.01 0.01 0.5
0.01 0.01 0.01 0.5
tag 0 AINV
sexenv.ide(dam) 2
4 0 US 
0.2 
0.01 0.3
0.01 0.01 0.2
0.01 0.01 0.01 0.2
ide(dam)
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